so sánh -69/68 và 1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



So sánh \(\frac{31}{7}\)và \(-\frac{35}{8}\)
Vì \(-\frac{35}{8}\)<0 và \(\frac{31}{7}\)>0
=>\(\frac{31}{7}>-\frac{35}{8}\)
-47/48 và -68/69
ta phân tích ra thùa số nguyên tố để tìm mẫu chung:
48=2x2x2x2x3
69=3x23
mẫu chung là:2x2x2x2x3x23=1104
-47/48x23/23=1081/1104
-68/69x16/16=1088/1104
37/7 và -35/8
ta phân tích ra thừa số nguên tố để tìm mẫu chung:
7=7x1
8=2x2x2
mẫu chung là:7x1x2x2x2=56
37/7x8/8=296/56
-35/8x7/7=-245/56

So sánh A và B biết A = \(\frac{100^{100}+1}{100^{ }^{99}+1}\)và B = \(\frac{100^{99}+1}{100^{98}+1}\)
Vì : 100100 > 10069
10099 > 10068
=> A > B
dễ thấy A<1. Áp dụng \(\frac{a}{b}\)< 1 thì \(\frac{a}{b}\)< \(\frac{a+c}{b+c}\), ta có :
A=\(\frac{^{100^{100}}+1}{^{ }100^{99}+1}\)< \(\frac{^{\left(100^{100}+1\right)+\left(100^{21}-1\right)}}{\left(100^{99}+1\right)+\left(100^{21}-1\right)}\)= \(\frac{100^{100}+100^{21}}{100^{99}+100^{21}}\)=\(\frac{100^{21}.\left(100^{69}+1\right)}{100^{21}.\left(100^{68}+1\right)}\)=\(\frac{100^{69}+1}{100^{68}+1}\)=B
Vậy A<B
so sánh
1.-16/121 và -24/113
2.49/56,47/58 và 49/58
3.27/73 và 271/731
4.31/7 và 35/8
5.-47/48 và -68/69



xem câu hỏi tương tự bạn nhé : Câu hỏi của Chó Doppy - Toán lớp 0 | Học trực tuyến
Ta có:
A=(100^100+1)/(100^99+1)= 1+(100^100)/(100^99)= 1+ 100 = 101.(1)
B=(100^69+1)/(100^68+1)= 1+(100^69)/(100^68)= 1+ 100 = 101. (2)
Từ (1) và (2) => A = B

Có :
A=100100+1/10099+1
1/100.A=100100+1/100.(10099+1)
A/100=100100+1/100100+100
A/100=1-99/100100
B bạn cũng làm tương tự và sau đó bạn so sánh 99/100^100 Và 99/100^69 là Ok.

A; so sánh \(\frac{13^{15}+1}{13^{16}+1}\); \(\frac{13^{16}+1}{13^{17}+1}\)
\(\frac{13^{16}+1}{13^{17}+1}\) < \(\frac{13^6+\left(1+12\right)}{13^7+\left(1+12\right)}\) = \(\frac{13^{16}+13}{13^{17}+13}\) = \(\frac{13^{}.\left(13^{15}+1\right)}{13^{}.\left(13^{16}+1\right)}\)= \(\frac{13^{15}+1}{13^{16}+1}\)
Vậy \(\frac{13^{15}+1}{13^{16}+1}\)> \(\frac{13^{16}+1}{13^{17}+1}\)
Câu B:
\(\frac{1999^{2000}+1}{1999^{1999}+1}\) > \(\frac{1999^{2000}+\left(1+1998\right)}{1999^{1999}+\left(1+1998\right)}\) = \(\frac{1999^{2000}+1999}{1999^{1999}+1999}\) = \(\frac{1999.\left(1999^{1999}+1\right)}{1999.\left(1999^{1998}+1\right)}\)
\(\frac{1999.\left(1999^{1999}+1\right)}{1999.\left(1999^{1998}+1\right)}\) = \(\frac{1999^{1999}+1}{1999^{1998}+1}\)
Vậy
\(\frac{1999^{1999}+1}{1999^{1998}+1}\) < \(\frac{1999^{2000}+1}{1999^{1999}+1}\)
Ta có: `-69/68<0<1/3` ( So sánh trung gian là số `0` )
Ta có: \(-\dfrac{69}{68}< 0< \dfrac{1}{3}\)
\(=>\dfrac{-69}{68}< \dfrac{1}{3}\)