tính hiệu a-b
a=1x2+2x3+3x4+....+98x99
b=1^2+2^2+3^2+...+98^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a=1\cdot2+2\cdot3+\cdots+98\cdot99\)
\(=1\left(1+1\right)+2\cdot\left(2+1\right)+\cdots+98\left(98+1\right)\)
\(=1^2+2^2+\cdots+98^2+1+2+\cdots+98\)
\(=b+\left(1+2+\cdots+98\right)\)
=>\(a-b=1+2+\cdots+98=98\cdot\frac{99}{2}=49\cdot99=4851\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{99.100}\)
= \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)
= \(2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)\)
= \(2.\left(1-\frac{1}{100}\right)\)
= \(2.\frac{99}{100}\)
= \(\frac{99}{50}\)
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
A:2= 1/1x2 + 1/2x3 +1/3x4 +...+ 1/99x100
A:2= 1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A:2=1/1-1/100
A:2=99/100
A=99/100 x2
A=99/50
CHÚC BẠN HỌC TỐT!
Đáp án là 1,98 nhé --- Đề bài: Tính giá trị biểu thức sau: \frac{2}{1 \times 2} + \frac{2}{2 \times 3} + \frac{2}{3 \times 4} + \cdots + \frac{2}{99 \times 100} --- Bài giải: Ta thấy biểu thức gồm nhiều phân số có dạng giống nhau: \frac{2}{n \times (n+1)} Ta biến đổi phân số này: \frac{2}{n(n+1)} = 2 \left( \frac{1}{n} - \frac{1}{n+1} \right) (Vì: , rồi nhân 2 vào là ra.) Vậy cả biểu thức trở thành: 2 \left( \frac{1}{1} - \frac{1}{2} \right) + 2 \left( \frac{1}{2} - \frac{1}{3} \right) + 2 \
Bài này là:
\(S = \frac{2}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \frac{2}{3 \cdot 4} + \hdots + \frac{2}{98 \cdot 99} + \frac{2}{99 \cdot 100}\)
Bước 1: Tách thành phân số đơn giản
Ta có công thức rút gọn:
\(\frac{2}{n \left(\right. n + 1 \left.\right)} = \frac{2}{n} - \frac{2}{n + 1}\)
Bước 2: Viết lại tổng
\(S=\left(\right.\frac{2}{1}-\frac{2}{2}\left.\right)+\left(\right.\frac{2}{2}-\frac{2}{3}\left.\right)+\left(\right.\frac{2}{3}-\frac{2}{4}+\cdots+\left(\right.\frac{2}{99}-\frac{2}{100}\left.\right)\)
Bước 3: Nhận ra dạng telescoping (các số ở giữa triệt tiêu)
Sau khi triệt tiêu:
\(S = 2 - \frac{2}{100}\)
Bước 4: Tính kết quả
\(S = 2 - 0.02 = 1.98\)
Hoặc viết gọn:
\(S = \frac{99}{50}\)
📌 Kết quả cuối:
\(\boxed{\frac{99}{50}hay1.98}\)
2/1x2+2/2x3+......+2/99x100
=2/1-2/2+2/2-2/3+.....+2/99-2/100
=2-2/100
=99/50
\(b=1.1+2.2+...+98.98=1\left(2-1\right)+2\left(3-1\right)+..+98.\left(99-1\right)=\left(1.2+2.3+...+98.99\right)-\left(1+2+...+98\right)\)=> \(a-b=\left(1.2+2.3+..+98.99\right)-\left[\left(1.2+2.3+...+98.99\right)-\left(1+2+...+98\right)\right]=1+2+3+...+98\)ta tính tổng của dãy số: a-b= (98+1).98:2=4851
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
B = ... (bạn tự tính)
=> A - B = ...