K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2023

\(\dfrac{2\times3\times5}{4\times9\times10}=\dfrac{2\times3\times5}{2^2\times3^2\times2\times5}=\dfrac{1}{2^2\times3}=\dfrac{1}{12}\)

11 tháng 1 2023

\(\dfrac{2\text{×}3\text{×}5}{4\text{×}9\text{×}10}=\dfrac{2\text{×}3\text{×}5}{2\text{×}2\text{×}3\text{×}3\text{×}2\text{×}5}=\dfrac{1}{2\text{×}3\text{×}2}=\dfrac{1}{12}\)

11 tháng 1 2023

\(\dfrac{2\times3\times5}{4\times9\times10}\)

\(=\dfrac{2\times3\times5}{2\times2\times3\times3\times5\times2}\)

\(=\dfrac{1}{2\times3\times2}=\dfrac{1}{12}\)

a. 6 x 5 = 30 

b.4 x 9 x 10 = 36 x 10 = 360 

3 tháng 6 2016

a)\(\frac{7x9x12}{6x14x18}=\frac{7x9x6x2}{6x7x2x9x2}=\frac{2}{2x2}=\frac{1}{2}\)

b) \(\frac{2x3x5}{4x9x10}=\frac{2x3x5}{2x2x3x3x2x5}=\frac{1}{2x2x3x5}=\frac{1}{60}\)

12 tháng 4 2022

a=1/2
b=1/60

\(\dfrac{2.3.5}{2.5.7}=\dfrac{3}{7}\)

31 tháng 1 2020

1. Rút gọn

\(\frac{8x20x4}{9x20x4}=\frac{8}{9}\)

\(\frac{7x9x12}{6x14x18}=\frac{1x1x2}{1x2x2}=\frac{2}{4}=\frac{1}{2}\)

\(\frac{2x3x5}{4x9x10}=\frac{1x1x1}{2x3x2}=\frac{1}{12}\)

2. tìm x

      \(\frac{x}{27}=\frac{12}{18}\)

      \(\frac{x}{27}=\frac{2}{3}\)

=>   X x 3 = 27 x 2

       X x 3 = 54

       X       = 54 : 3

       X       = 18

\(\frac{35}{49}=\frac{10}{x}\)

\(\frac{5}{7}=\frac{10}{x}\)

=> 5 x X = 7 x 10

     5 x X = 70

           X = 70 : 5

           X = 14

1.  \(\frac{8.20.4}{9.20.4}\)=     \(\frac{8}{9}\)        

  \(\frac{7.9.12}{6.14.18}\)=    \(\frac{7.9.6.2}{6.7.2.9.2}\)=    \(\frac{1}{2}\)

\(\frac{2.3.5}{4.9.10}\)=    \(\frac{2.3.5}{2.2.3.3.2.5}\)=    \(\frac{1}{12}\)

2.   \(\frac{x}{27}\)=   \(\frac{12}{18}\)                                                                            \(\frac{35}{49}\)=     \(\frac{10}{x}\)

Ta có : \(\frac{12}{18}\)=   \(\frac{6}{9}\)                                                                        Ta có : \(\frac{35}{49}\)=    \(\frac{70}{98}\)

Mà   \(\frac{x}{27}\)=    \(\frac{6}{9}\)                                                                          Mà    \(\frac{10}{x}\)=     \(\frac{70}{98}\)

\(\Rightarrow\)\(x\)=   \(27:9.6\)                                                                       \(\Rightarrow\)\(x\)=    \(98:\left(70:10\right)\)

Chú ý : ''  \(.\)" là dấu nhân.

6 tháng 8 2018

\(\frac{30\cdot25\cdot7\cdot8}{75\cdot8\cdot12\cdot14}\)

\(=\frac{2\cdot3\cdot5\cdot5\cdot5\cdot7\cdot8}{5\cdot3\cdot5\cdot8\cdot3\cdot2\cdot2\cdot2\cdot7}\)

\(=\frac{5}{3\cdot2\cdot2}\)

\(=\frac{5}{12}\)

\(\frac{2\cdot3\cdot5}{20\cdot6}\)

\(=\frac{2\cdot3\cdot5}{4\cdot5\cdot2\cdot3}\)

\(=\frac{1}{4}\)

6 tháng 8 2018

\(\frac{30\times25\times7\times8}{75\times8\times12\times14}=\frac{6\times5\times25\times7\times8}{3\times25\times8\times6\times2\times7\times2}=\frac{5}{3\times2\times2}=\frac{5}{12}\)

\(\frac{2\times3\times5}{20\times6}=\frac{2\times3\times5}{4\times5\times3\times2}=\frac{1}{4}\)

~Học tốt ~~

14 tháng 2 2016

a. \(\frac{3.5.7}{6.21}=\frac{21.5}{21.6}=\frac{5}{6}\)

b. \(\frac{2.3.5}{4.5.6}=\frac{6.5}{4.5.6}=\frac{1}{4}\)

21 tháng 7 2016

cau tra loi la 30  h cho em nha thien tai 2

21 tháng 7 2016

2x3x5=30 nha bn.

28 tháng 1 2018

\(\frac{2\times3\times5}{3\times5\times7}=\frac{2}{7}\)

28 tháng 1 2018

2 x 3 x 5 / 3 x 5 x 7 = 2/7

Tk mk nha

Đặt \(A=1\cdot2\cdot4+2\cdot3\cdot5+3\cdot4\cdot6+\cdots+100\cdot101\cdot103\)

\(=1\cdot2\cdot\left(3+1\right)+2\cdot3\cdot\left(4+1\right)+\cdots+100\cdot101\cdot\left(102+1\right)\)

\(=\left(1\cdot2\cdot3+2\cdot3\cdot4+\cdots+100\cdot101\cdot102\right)+\left(1\cdot2+2\cdot3+\cdots+100\cdot101\right)\)

Đặt \(B=1\cdot2\cdot3+2\cdot3\cdot4+\cdots+100\cdot101\cdot102\)

\(=\left(2-1\right)\cdot2\cdot\left(2+1\right)+\left(3-1\right)\cdot3\cdot\left(3+1\right)+\cdots+\left(101-1\right)\cdot101\cdot\left(101+1\right)\)

\(=2\left(2^2-1\right)+3\left(3^2-1\right)+\cdots+101\left(101^2-1\right)\)

\(=\left(2^3+3^3+\cdots+101^3\right)-\left(2+3+\cdots+101\right)\)

\(=\left(1^3+2^3+3^3+\cdots+101^3\right)-1-\left(2+3+\cdots+101\right)\)

\(=\left(1^3+2^3+\cdots+101^3\right)-\left(1+2+3+\cdots+101\right)\)

\(=\left(1+2+3+\cdots+101\right)^2-\left(1+2+3+\cdots+101\right)\)

\(=\left\lbrack101\cdot\frac{102}{2}\right\rbrack^2-101\cdot\frac{102}{2}=\left(101\cdot51\right)^2-101\cdot51\)

Đặt \(C=1\cdot2+2\cdot3+\cdots+100\cdot101\)

\(=1\left(1+1\right)+2\left(2+1\right)+\cdots+100\left(100+1\right)\)

\(=\left(1^2+2^2+\cdots+100^2\right)+\left(1+2+\cdots+100\right)\)

\(=\frac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}+\frac{100\cdot101}{2}=\frac{100\cdot101\cdot201}{6}+50\cdot101\)

\(=50\cdot101\cdot67+50\cdot101=50\cdot101\cdot68\)

Ta có: A\(=\left(1\cdot2\cdot3+2\cdot3\cdot4+\cdots+100\cdot101\cdot102\right)+\left(1\cdot2+2\cdot3+\cdots+100\cdot101\right)\)

=B+C

\(=\left(101\cdot51\right)^2-101\cdot51+50\cdot101\cdot68\)

\(=101^2\cdot51^2-101\cdot51+50\cdot101\cdot68=101\left(101\cdot51^2-51+50\cdot68\right)=101\cdot266050\)

Đặt \(D=1\cdot2^2+2\cdot3^2+\cdots+100\cdot101^2\)

\(=2^2\left(2-1\right)+3^2\left(3-1\right)+\cdots+101^2\left(101-1\right)\)

\(=\left(2^3+3^3+\cdots+101^3\right)-\left(2^2+3^2+\cdots+101^2\right)\)

\(=\left(1^3+2^3+\cdots+101^3\right)-\left(1^2+2^2+\cdots+101^2\right)\)
\(=\left(1+2+\cdots+101\right)^2-101\cdot\frac{\left(101+1\right)\left(2\cdot101+1\right)}{6}\)

\(=\left(101\cdot\frac{102}{2}\right)^2-101\cdot17\cdot2023=101^2\cdot51^2-101\cdot17\cdot2023\)

\(=101\cdot17\left(101\cdot17\cdot3^2-2023\right)=101\cdot17\cdot13430\)

Ta có: \(\frac{1\cdot2\cdot4+2\cdot3\cdot5+3\cdot4\cdot6+\cdots+100\cdot101\cdot103}{1\cdot2^2+2\cdot3^2+\cdots+100\cdot101^2}\)

\(=\frac{101\cdot266050}{101\cdot17\cdot13430}=\frac{1565}{1343}\)