Cho A = 9²³ + 5.3⁴³. Chứng minh rằng A chia hết cho 32.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=\left(3^2\right)^{23}+5.3^{43}=3^{46}+5.3^{43}=3^{43}\left(3^3+5\right)=32.3^{43}⋮32\) (đpcm)

Ta có: A = 9²³ + 5 * 3⁴³
A = (3²)²³ + 5 * 3⁴³
A = 3\(^{46}\) + 5 * 3⁴³
A = 3⁴³ * (3³ + 5 * 1)
A = 3⁴³ * (27 + 5)
A = 3⁴³ * 32
⇒ A ⋮ 32
Vậy A ⋮ 32

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)\)
\(=30\left(1+2^4+...+2^{96}\right)⋮30\)
2:
\(B=3+3^2+3^3+...+3^{2022}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)
\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

Nếu đúng là zậy thì mk biết làm.
A = 3 + 32 + 33 + ... + 32004
A = ( 3 + 32 + 33 + 34 ) + ... + ( 32001 + 32002 + 32003 + 32004 )
A = 3( 1 + 3 + 32 + 33 ) + ... + 32001( 1 + 3 + 32 + 39 )
A = 3.40 + ... + 32001.40
A = ( 3 + 35 + ... 32001) . 40
=> A chia hết cho 40
\(A=9^{23}+5.3^{43}=3^{46}+5.3^{43}=3^{43}\left(3^3+5\right)=3^{43}.32\)
Vì \(32⋮32=>A⋮32\)