🎁 OLM khai giảng khóa học hè. XEM NGAY!!!
OLM Class: Học trực tiếp cùng giáo viên OLM (hoàn toàn mới)!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho : A= \(\frac{1}{5}+\frac{1}{15}+\frac{1}{25}+...+\frac{1}{1985}\)
CMR: A<\(\frac{9}{20}\)
A=1/5+1/15+1/25+...+11/985 A=1/5.(1+1/3+1.5+...+1/397)=1/5.(1+1/1+2+1/2+3+...+1/198+199)=1/5.(1+1−1/2+1/2−1/3+...+1/198−1/199)=1/5.(2−1/199)=397/995<920\
K nhé
CMR \(A=\frac{1}{5}+\frac{1}{15}+\frac{1}{25}+...+\frac{1}{1985}< \frac{9}{20}\)
CMR:\(\frac{1}{5}+\frac{1}{15}+\frac{1}{25}+...+\frac{1}{1985}< \frac{9}{20}\)
CMR:
\(\frac{1}{5}+\frac{1}{15}+\frac{1}{25}+...+\frac{1}{1985}< \frac{9}{20}\)
CMR: \(\frac{1}{5}+\frac{1}{15}+\frac{1}{25}+...+\frac{1}{1985}<\frac{9}{20}\)
CMR \(\frac{1}{5}+\frac{1}{15}+\frac{1}{25}\) +..................+\(\frac{1}{1985}<\frac{9}{20}\)
bn nhấn vào đúng 0 sẽ ra đáp án
2 uyên mắm
CMR \(\frac{1}{5}+\frac{1}{15}+\frac{1}{25}+...+\frac{1}{1985}<\frac{9}{20}\)
Cho xin lời giải nhá mọi người
Chứng minh:\(A=\frac{1}{5}+\frac{1}{15}+\frac{1}{25}+...+\frac{1}{1985}< \frac{9}{20}\)
CMR: \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{1985}<\frac{9}{20}\)
Chứng minh rằng \(\frac{1}{5}+\frac{1}{15}+\frac{1}{25}+...+\frac{1}{1985}< \frac{9}{20}\)
A=1/5+1/15+1/25+...+11/985
A=1/5.(1+1/3+1.5+...+1/397)
=1/5.(1+1/1+2+1/2+3+...+1/198+199)
=1/5.(1+1−1/2+1/2−1/3+...+1/198−1/199)
=1/5.(2−1/199)
=397/995<920\
K nhé