Tìm x,biết
3(1-x)=-4x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
\(3\left(x-2\right)+4\left(x-5\right)=23\)
\(\Rightarrow3x-6+4x-20-23=0\)
\(\Rightarrow7x-49=0\)
\(\Rightarrow x=7\)
3(x-2)+4(x-5)=23
<=>3x-6+4x-20=23
<=>7x-26=23
<=>7x=49
<=>x=7
Vậy x=7
\(\dfrac{3}{7}+\dfrac{a}{b}+\dfrac{2}{3}=\dfrac{1}{2}\)
\(\dfrac{3}{7}+\dfrac{a}{b}=\dfrac{1}{2}-\dfrac{2}{3}\)
\(\dfrac{3}{7}+\dfrac{a}{b}=-\dfrac{1}{6}\)
\(\dfrac{a}{b}=-\dfrac{1}{6}-\dfrac{3}{7}\)
\(\dfrac{a}{b}=-\dfrac{25}{42}\)
_____________
\(\dfrac{a}{b}-\dfrac{4}{9}+\dfrac{1}{10}=\dfrac{1}{7}\)
\(\dfrac{a}{b}-\dfrac{4}{9}=\dfrac{1}{7}-\dfrac{1}{10}\)
\(\dfrac{a}{b}-\dfrac{4}{9}=\dfrac{3}{70}\)
\(\dfrac{a}{b}=\dfrac{3}{70}+\dfrac{4}{9}\)
\(\dfrac{a}{b}=\dfrac{307}{630}\)
\(4x\left(3-\dfrac{1}{4}x\right)+\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow12x-x^2+x^2-4=0\Rightarrow12x=4\Rightarrow x=\dfrac{1}{3}\)
\(12x-x^2+x^2-2^2=0\)
\(12x-2=0\)
\(12x=2\)
\(x=\dfrac{1}{6}\)
Vậy x=1/6
n: ĐKXĐ: x<>0
\(\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)+2=0\)
=>\(\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right)-\left(x+\dfrac{1}{x}\right)+2=0\)
=>\(\left(x+\dfrac{1}{x}-2\right)\left(x+\dfrac{1}{x}-1\right)=0\)
=>\(\dfrac{x^2+1-2x}{x}\cdot\dfrac{x^2+1-x}{x}=0\)
=>\(\left(x^2-2x+1\right)\left(x^2-x+1\right)=0\)
=>\(\left(x-1\right)^2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)
=>\(\left(x-1\right)^2=0\)
=>x-1=0
=>x=1
p: \(x^4-4x^3+6x^2-4x+1=0\)
=>\(x^4-x^3-3x^3+3x^2+3x^2-3x-x+1=0\)
=>\(x^3\left(x-1\right)-3x^2\left(x-1\right)+3x\left(x-1\right)-\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-3x^2+3x-1\right)=0\)
=>\(\left(x-1\right)^4=0\)
=>x-1=0
=>x=1
3(1 - x) = -4x - 2
3 - 3x = -4x - 2
-3x + 4x = -2 - 3
x = -5
3( 1 - x ) = -4x - 2
3 - 3x = -4x - 2
-3x + 4x = -2 - 3
\(\Rightarrow\)x = -5