Cho hs: y=2x2 (P)
a, Viết phương trình đường thẳng (d) đi qua điểm M(0;-2) và tiếp xúc với (P)
b, Tìm các khoảng đồng biến và nghịch biến của hàm số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (d): 2x-y+3=0
=>y=2x+3
Vì (d') vuông góc với (d) nên 2a=-1
=>a=-1/2
Vậy: (d'): y=-1/2x+b
Thay x=3 và y=1 vào (d'), ta được:
b-3/2=1
hay b=5/2
Vậy: (d'): y=-1/2x+5/2
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+3=-\dfrac{1}{2}x+\dfrac{5}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-\dfrac{1}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=-\dfrac{2}{5}+3=\dfrac{13}{5}\end{matrix}\right.\)
Đề bài đúng là Cho phương trình (d) có pt tổng quát : 2x-y+3=0 và điểm M( 3,1)
a: (d): 2x-y+3=0
=>y=2x+3
Vì (d') vuông góc với (d) nên 2a=-1
=>a=-1/2
Vậy: (d'): y=-1/2x+b
Thay x=3 và y=1 vào (d'), ta được:
b-3/2=1
hay b=5/2
Vậy: (d'): y=-1/2x+5/2
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+3=-\dfrac{1}{2}x+\dfrac{5}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-\dfrac{1}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=-\dfrac{2}{5}+3=\dfrac{13}{5}\end{matrix}\right.\)
a: (d): 2x-y+3=0
=>y=2x+3
Vì (d') vuông góc với (d) nên 2a=-1
=>a=-1/2
Vậy: (d'): y=-1/2x+b
Thay x=3 và y=1 vào (d'), ta được:
b-3/2=1
hay b=5/2
Vậy: (d'): y=-1/2x+5/2
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+3=-\dfrac{1}{2}x+\dfrac{5}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-\dfrac{1}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=-\dfrac{2}{5}+3=\dfrac{13}{5}\end{matrix}\right.\)
a: vecto AB=(6;-4)
PTTS là:
x=-6+6t và y=3-4t
b: Vì (d) vuông góc AB nên (d) có VTPT là (3;-2)
Phương trình(d) là:
3(x-3)+(-2)(y-2)=0
=>3x-9-2y+4=0
=>3x-2y-5=0
Lời giải:
Vì $A\in (d_1)$ nên gọi tọa độ của $A$ là $(a, 2a-2)$
Vì $B\in (d_2)$ nên gọi tọa độ của $B$ là $(b, -b-3)$
$M$ là trung điểm của $AB$ nên:
\(3=x_M=\frac{x_A+x_B}{2}=\frac{a+b}{2}\Rightarrow a+b=6(1)\)
\(0=y_M=\frac{y_A+y_B}{2}=\frac{2a-2-b-3}{2}\Rightarrow 2a-b=5(2)\)
Từ $(1); (2)\Rightarrow a=\frac{11}{3}; b=\frac{7}{3}$
Khi đó: $A=(\frac{11}{3}, \frac{16}{3})$
Vì $A, M\in (d)$ nên VTCP của (d) là $\overrightarrow{MA}=(\frac{2}{3}, \frac{16}{3})$
$\Rightarrow \overrightarrow{n_d}=(\frac{-16}{3}, \frac{2}{3})$
PTĐT $(d)$ là:
$\frac{-16}{3}(x-3)+\frac{2}{3}(y-0)=0$
$\Leftrightarrow -8x+y+24=0$
Đáp án D
Gọi H là hình chiếu của A trên đường thẳng d.
Ta có: AH ≤ AM nên khoảng cách từ A đến đường thẳng d nhỏ nhất khi AH trùng với mới AM, khi đó H trùng với M và AM vuông góc d. Mặt phẳng (P) có vecto pháp tuyến n p → (1; 1; 1) . AM → (0; -2; -1) Đường thẳng d nhận vecto [ AM → ; n p → ] làm vecto chỉ phương. Phương trình tham số của d:
Dưới đây là hướng dẫn chi tiết giải bài toán từ link bạn cung cấp:
Trong không gian Oxyz, cho hai điểm \(A \left(\right. 3 ; 2 ; 1 \left.\right)\), \(M \left(\right. 3 ; 0 ; 0 \left.\right)\) và mặt phẳng \(\left(\right. P \left.\right) : x + y + z - 3 = 0\).
Viết phương trình của đường thẳng \(d\) đi qua điểm \(M\), nằm trong mặt phẳng \(\left(\right. P \left.\right)\) sao cho khoảng cách từ \(A\) đến đường thẳng \(d\) nhỏ nhất.
Khoảng cách từ \(A\) đến \(d\) nhỏ nhất khi đường thẳng \(d\) nằm trong \(\left(\right. P \left.\right)\), đi qua \(M\) và vuông góc với đoạn \(A M\).
Vậy:
\(\overset{\rightarrow}{u} = \overset{\rightarrow}{A M} \times \overset{\rightarrow}{n_{P}}\)
Tính tích có hướng:
\(\overset{\rightarrow}{u} = \mid \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & - 2 & - 1 \\ 1 & 1 & 1 \mid = \mathbf{i} \left(\right. \left(\right. - 2 \left.\right) \cdot 1 - \left(\right. - 1 \left.\right) \cdot 1 \left.\right) - \mathbf{j} \left(\right. 0 \cdot 1 - \left(\right. - 1 \left.\right) \cdot 1 \left.\right) + \mathbf{k} \left(\right. 0 \cdot 1 - \left(\right. - 2 \left.\right) \cdot 1 \left.\right)\) \(= \mathbf{i} \left(\right. - 2 + 1 \left.\right) - \mathbf{j} \left(\right. 0 + 1 \left.\right) + \mathbf{k} \left(\right. 0 + 2 \left.\right) = \mathbf{i} \left(\right. - 1 \left.\right) - \mathbf{j} \left(\right. 1 \left.\right) + \mathbf{k} \left(\right. 2 \left.\right)\) \(\Rightarrow \overset{\rightarrow}{u} = \left(\right. - 1 , - 1 , 2 \left.\right)\)Đường thẳng \(d\) đi qua \(M \left(\right. 3 ; 0 ; 0 \left.\right)\), nhận \(\overset{\rightarrow}{u} = \left(\right. - 1 , - 1 , 2 \left.\right)\) làm vector chỉ phương:
\(\boxed{\left{\right. x = 3 - t \\ y = 0 - t \\ z = 0 + 2 t \left(\right. t \in \mathbb{R} \left.\right)}\)Hoặc:
\(\boxed{\frac{x - 3}{- 1} = \frac{y}{- 1} = \frac{z}{2}}\)Phương trình đường thẳng \(d\) cần tìm là:
\(\boxed{\frac{x - 3}{- 1} = \frac{y}{- 1} = \frac{z}{2}}\)hoặc
\(\boxed{\left{\right. x = 3 - t \\ y = - t \\ z = 2 t}\)Nếu bạn cần giải thích thêm về các bước giải hoặc muốn biết cách tính khoảng cách, hãy hỏi nhé!
gọi pt đt d cần tìm là: y=ax+b
vì d đi qua M(0;-2) nên ta thay x=0, y=-2 vào d: \(-2=0a+b\Leftrightarrow b=-2\)=> (d): y=ax-2
xét pt: \(2x^2=ax-2\Leftrightarrow2x^2-ax+2=0\); \(\Delta=1-4.2.2=-15<0\Rightarrow\)d và P k giao nhau
=> k tìm đc đt d t/m
hình như đề sai bạn ạ. vì k tìm đc d nên câu b k làm đc luôn