cho p là số nguyên tố lớn hơn 3. CMR p^2-1 chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(A=p^2-1\)
p là số nguyên tố lớn hơn 3 nên p là số lẻ và p không chia hết cho 3
Vì p là số lẻ nên p=2x+1
\(A=p^2-1=\left(p-1\right)\left(p+1\right)\)
\(=\left(2x+1-1\right)\left(2x+1+1\right)=2x\left(2x+2\right)=4x\left(x+1\right)\)
Vì x;x+1 là hai số tự nhiên liên tiếp
nên x(x+1)⋮2
=>4x(x+1)⋮4*2
=>A⋮8(1)
Vì p là số không chia hết cho 3 nên p=3k+1 hoặc p=3k+2
TH1: p=3k+1
A=(p-1)(p+1)
=(3k+1-1)(3k+1+1)
\(=3k\left(3k+2\right)\) ⋮3(2)
TH2: p=3k+2
A=(p-1)(p+1)
=(3k+2-1)(3k+2+1)
=(3k+1)(3k+3)
=3(k+1)(3k+1)⋮3(3)
Từ (2),(3) suy ra A⋮3
mà A⋮8
và ƯCLN(3;8)=1
nên A⋮3*8
=>A⋮24

+ Do a nguyên tố > 3 => a không chia hết cho 3 => a2 không chia hết cho 3
=> a2 chia 3 dư 1
=> a2 - 1 chia hết cho 3 (1)
+ Do a nguyên tố > 3 => a lẻ => a2 lẻ
=> a2 chia 8 dư 1
=> a2 - 1 chia hết cho 8 (2)
Từ (1) và (2), do (3;8)=1 => a2 - 1 chia hết cho 24 ( đpcm)




a, Vì a là số nguyên tố lớn hơn 3 nên a có dạng 3k+1 hoặc 3k+2(k thuộc N*)
Xét a=3k+1=> a2-1=(a-1)(a+1)=3k(3k+2)\(⋮\)3
Vì k thuộc N* mà 3k,3k+2 là 2 số cùng tính chẵn lẻ liên tiếp nên 3k(3k+2) chia hết cho 8
mà (8,3)=1=> a2-1\(⋮\)24