Tìm ƯC của:
a) 3.n và 3.n+2
b) 4.n+3 và 2.n
c) 4.n+3 và 2.n+3
Giups mình trong sáng nay nhé!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi $d=ƯC(n, n+1)$
$\Rightarrow n\vdots d; n+1\vdots d$
$\Rightarrow (n+1)-n\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯC(n, n+1)=1$
Câu 2:
Gọi $d=ƯC(5n+6, 8n+7)$
$\Rightarrow 5n+6\vdots d; 8n+7\vdots d$
$\Rightarrow 8(5n+6)-5(8n+7)\vdots d$
$\Rigtharrow 13\vdots d$
$\Rightarrow d\left\{1; 13\right\}$
a; Gọi ƯCLN(n + 1; 3n + 4) = d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\3n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}3n+3⋮d\\3n+4⋮d\end{matrix}\right.\) ⇒ 3n + 3 - 3n - 4 ⋮ d
⇒ (3n -3n) - (4 - 3) ⋮ d ⇒ 0 - 1⋮ d ⇒ 1 ⋮ d ⇒ d \(\in\) Ư(1) = 1
Vậy ƯCLN(n + 1; 3n + 4) = 1
ƯC(n +1; 3n +4) = 1
Gọi ƯCLN(30n + 4; 20n + 3) = d
Ta có: \(\left\{{}\begin{matrix}30n+4⋮d\\20n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}60n+8⋮d\\60n+6⋮d\end{matrix}\right.\) ⇒ 60n + 8 - 60n - 6 ⋮ d
⇒ (60n - 60n) +(8 - 6) ⋮ d ⇒ 0 +2 ⋮ d ⇒ 2 ⋮ d
⇒ d \(\in\) Ư(2)
Vậy Ước chung lớn nhất của (30n + 4 và 20n + 3) là 2
bai2
UCLN (n,n+2)=d
=>(n+2)-n chia hết cho d
2 chia het cho d
vay d thuoc uoc cua 2={1,2}
nếu n chia hết cho 2 uoc chung lon nhta (n,n+2) la 2
neu n ko chia het cho 2=> (n,n+2) nguyen to cung nhau
BCNN =n.(n+2) neu n le
BCNN=n.(n+2)/2
vì 2 cặp số lẻ cộng vs nhau sẽ đc 1 số chẵn nên tổng tổng 3 , 4 , 5,.....cặp lại sẽ có tổng tận cùng = 0 , 5
mà các cặp số chia cho 5 cộng vs nhau cũng đc 1 số chia hết cho 5
nên tổng trên chia hết cho 5
Giai giùm mình trong sáng nay nhé!!!.