K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

18 tháng 4 2021

Cách tính MK mình chưa nghĩ ra mong bạn thông cảm 

22 tháng 3 2022

-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!

a) △MNP vuông tại M \(\Rightarrow MN^2+MP^2=NP^2\Rightarrow NP^2=\sqrt{MN^2+MP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

△MNP có: ND phân giác.\(\Rightarrow\dfrac{DM}{DP}=\dfrac{NM}{NP}\)

\(\Rightarrow\dfrac{DM}{NM}=\dfrac{DP}{NP}=\dfrac{DM+DP}{NM+NP}=\dfrac{MP}{NM+NP}\)

\(\Rightarrow DM=\dfrac{MP.NM}{NM+NP}=\dfrac{4.3}{3+5}=1,5\left(cm\right)\)

\(\Rightarrow DP=\dfrac{MP.NP}{NM+NP}=\dfrac{4.5}{3+5}=2,5\left(cm\right)\)

b) △MNH∼△PNM (g-g) \(\Rightarrow\dfrac{MN}{PN}=\dfrac{NH}{NM}\)

△MNH có: NK phân giác \(\Rightarrow\dfrac{NH}{NM}=\dfrac{KH}{KM}=\dfrac{MN}{PN}=\dfrac{DM}{DP}\)

c) △MND∼HNK (g-g) \(\Rightarrow\widehat{MDN}=\widehat{HKN}=\widehat{MKD}\)\(\dfrac{NM}{NH}=\dfrac{ND}{NK}\Rightarrow NH.ND=NM.NK\)

\(\Rightarrow\)△MDK cân tại M

 

a: ta có: ΔMNP cân tại M

mà MH là đường cao

nên H là trung điểm của NP

hay HN=HP

b: NH=NP/2=8/2=4(cm)

=>MH=3(cm)

c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có

MH chung

\(\widehat{DMH}=\widehat{EMH}\)

Do đó: ΔMDH=ΔMEH

Suy ra: HD=HE

hay ΔHED cân tại H

Xét ΔMNK có

MH vừa là đường cao, vừa là trung tuyến

=>ΔMNK cân tại M

9 tháng 4 2017

a) xét tam giác MHN và tam giác MHP có

         \(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)

         MN = MP ( tam giác MNP cân tại M)

         MH chung

=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)

b) vì tam giác MHN = tam giác MHP (câu a)

=> \(\widehat{M1}\)\(\widehat{M2}\)(2 góc tương ứng)

=> MH là tia phân giác của \(\widehat{NMP}\)

9 tháng 4 2017

bạn tự vẽ hình nhé

a.

vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)

Xét tam giác MHN và tam giác MHP

có: MN-MP(CMT)

 \(\widehat{N}\)=\(\widehat{P}\)(CMT)

MH là cạnh chung

\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)

=> Tam giác MHN= Tam giác MHP(ch-gn)

=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG)          (1)

và NH=PH( 2 cạnh tương ứng)

mà H THUỘC NP=> NH=PH=1/2NP                               (3)

b. Vì H năm giữa N,P

=> MH nằm giữa MN và MP                                           (2)

Từ (1) (2)=> MH là tia phân giác của góc NMP

c. Từ (3)=> NH=PH=1/2.12=6(cm)

Xét tam giác MNH có Góc H=90 độ

=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)

hay \(10^2=6^2+MH^2\)

=>\(MH^2=10^2-6^2\)

\(MH^2=64\)

=>MH=8(cm)

28 tháng 3 2022

có M

28 tháng 3 2022

chưa hỉu cái đề lắm

18 tháng 5

Giả thiết chung:

  • Tam giác MNP cân tại M\(M N = M P\)
  • \(M H \bot N P\), H ∈ NP ⇒ MH là đường cao từ M xuống đáy NP
  • \(H I \bot M N\) tại I, và \(H K \bot M P\) tại K.

🔷 Câu a): Chứng minh \(\triangle M H N = \triangle M H P\)

Xét hai tam giác vuông MHN và MHP:

Ta có:

  • \(M H\) chung (cạnh huyền trong hai tam giác vuông)
  • \(\angle M H N = \angle M H P = 90^{\circ}\) (do \(M H \bot N P\))
  • \(M N = M P\) (do tam giác MNP cân tại M)

→ Hai tam giác vuông có:

  • Cạnh huyền bằng nhau: \(M N = M P\)
  • Cạnh góc vuông chung: \(M H\)

\(\triangle M H N = \triangle M H P\) (theo trường hợp c.g.c – cạnh huyền – góc vuông – cạnh góc vuông)

ĐPCM


🔷 Câu b): Từ điểm H kẻ \(H I \bot M N\), \(H K \bot M P\)

Đây là bước kẻ hình:

  • Gọi I là chân đường vuông góc từ H đến MN ⇒ \(H I \bot M N\)
  • Gọi K là chân đường vuông góc từ H đến MP ⇒ \(H K \bot M P\)

Không cần chứng minh, chỉ cần ghi thao tác kẻ hình:

Đã kẻ xong \(H I \bot M N\), \(H K \bot M P\).


🔷 Câu c): Chứng minh tam giác MIK là tam giác cân

Ta cần chứng minh: \(M I = M K\)

Ý tưởng:

Ta sẽ sử dụng tính chất đối xứng của tam giác cân và kết quả từ câu a.


Phân tích và chứng minh:

  • Từ câu a: \(\triangle M H N = \triangle M H P\)\(\angle M H N = \angle M H P\), và do đối xứng, HI = HK.
  • Trong hai tam giác vuông \(\triangle H I K\)\(\triangle H K I\), ta thấy:
    • \(H I = H K\) (do đối xứng)
    • \(\angle I H N = \angle K H P = 90^{\circ}\)
    • \(H\) là chung

⇒ Hai tam giác \(\triangle H M I\)\(\triangle H M K\) bằng nhau

⇒ Suy ra: \(M I = M K\)


Kết luận:

Tam giác \(M I K\)\(M I = M K\)là tam giác cân tại M

ĐPCM

a: Xét ΔNMK co

NE vừa là đường cao, vừa là phân giác

=>ΔNMK cân tại N

=>NM=NK

Xét ΔNMD và ΔNKD có

NM=NK

góc MND=góc KND

ND chung

=>ΔMND=ΔKND

=>góc NKD=90 độ

=>DK vuông góc NP

b: Xét ΔNKM có

MH,NE là đường cao

MH cắt NE tại I

=>I là trực tâm

=>KI vuông góc MN

=>KI//MP