Tồn tại hay không số tự nhiên n thỏa mãn n^2 + 2020 là tích của 3 số liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 5:
a: \(x^2\ge0\forall x\)
=>\(x^2+2021\ge2021\forall x\)
Dấu '=' xảy ra khi x=0
b: \(22x^{22}\ge0\forall x;20x^{20}\ge0\forall x\)
Do đó: \(22x^{22}+20x^{20}\ge0\forall x\)
=>\(-22x^{22}-20x^{20}\le0\forall x\)
=>\(B=-22x^{22}-20x^{20}+2022\le2022\forall x\)
Dấu '=' xảy ra khi x=0
Bài 3:
a: 2x-1 là bội của x-3
=>2x-1⋮x-3
=>2x-6+5⋮x-3
=>5⋮x-3
=>x-3∈{1;-1;5;-5}
=>x∈{4;2;8;-2}
b: 2x+1 là ước của 3x+2
=>3x+2⋮2x+1
=>6x+4⋮2x+1
=>6x+3+1⋮2x+1
=>1⋮2x+1
=>2x+1∈{1;-1}
=>2x∈{0;-2}
=>x∈{0;-1}
Bài 1:
n;n+1;n+2;n+3 là bốn số nguyên liên tiếp
=>n(n+1)(n+2)(n+3)⋮4!=24
=>n(n+1)(n+2)(n+3)⋮3 và n(n+1)(n+2)(n+3)⋮8

Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).
Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))
Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.
Vậy...