cho tam giác ABC cân nha mn sợ mn ko nhìn dc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) BE = DC, ΔBEC = ΔCDB.
Vì ΔABC cân tại A nên: AB = AC.
Ta lại có: AB = AE + EB mà AE = EB (gt)
AC = AD + DC mà AD = DC (gt)
⇒ AE = EB = AD = DC
Vậy BE = DC.
Xét ΔBEC và ΔCDB có:
BE = CD (cmt)
∠ABC = ∠ACB (ΔABC cân)
BC : cạnh chung.
Do đó: ΔBEC = ΔCDB (c.g.c)
b) ΔBGC cân.
Vì ΔBEC = ΔCDB (câu a)
⇒ ∠ECB = ∠DBC (hai góc tương ứng)
⇒ ΔBGC cân tại G.
Câu c và hình chờ xíu :v
c) BC <4GD
Kẻ trung tuyến AG ⇒ G là trọng tâm của ΔABC, mà ΔABC cân (gt) ⇒ AG là phân giác của ∠BAC (∠A1 = ∠A2)
AG cắt BC tại H (HB = HC)
Xét ΔABH và ΔACH có:
AB = AC (gt)
BH = HC (cmt)
AH : chung
Do đó: ΔABH = ΔACH (c.c.c)
⇒ ∠H1 = ∠H2 (hai góc tương ứng) Mà ∠H1 + ∠H2 = 180o
⇒ ∠H1 = ∠H2 = 180o : 2 = 90o hay AH ⊥ BC.
Vì ΔBGC cân tại G nên: GB = GC (hai cạnh đáy) Mà GB = 2GD
⇒ 4GD = DB + GC.
Xét ΔBGH vuông tại H, ta có: BG > BH (định lí) (1)
Xét ΔCGH vuông tại H, ta có: CG > CH (định lí) (2)
Từ (1) và (2) suy ra: BG + CG > BH + CH
Mà GB + CG = 4GD (cmt) và CB = BH + CH
⇒ 4GD > BC

Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc BAE chung
=>ΔABE=ΔACF
=>AE=AF
Xét ΔABC có AF/AB=AE/AC
nên FE//BC
Xét tứ giác BFEC có
FE//BC
góc FBC=góc ECB
=>BFEC là hình thang cân
Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC

#)Giải : (Nghĩ đi nghĩ lại mới thấy nó dễ ẹc :v)
A B C S T O
Vì BT là tia phân giác của góc \(\widehat{ABC}\)
\(\Rightarrow\widehat{SBO}=\widehat{OBC}\left(1\right)\)
Vì CS là tia phân giác của góc \(\widehat{ACB}\)
\(\Rightarrow\widehat{TCO}=\widehat{OCB}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{SBO}=\widehat{OBC}=\widehat{TCO}=\widehat{OCB}\) hay \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\Delta ABC\) cân tại A
Cái dòng này "từ (1) và (2) =>" Em nhầm rồi kìa và nếu làm thế sẽ không sử dụng ST//BC.
a. Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay MNCB là hthang
Mà \(\widehat{B}=\widehat{C}\) (ABC cân A) nên MNCB là htc
b. Đề thiếu