K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

a. Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC hay MNCB là hthang

Mà \(\widehat{B}=\widehat{C}\) (ABC cân A) nên MNCB là htc

b. Đề thiếu

28 tháng 4 2019

a) BE = DC, ΔBEC = ΔCDB.

Vì ΔABC cân tại A nên: AB = AC.

Ta lại có: AB = AE + EB mà AE = EB (gt)

AC = AD + DC mà AD = DC (gt) 

⇒ AE = EB = AD = DC

Vậy BE = DC.

Xét ΔBEC và ΔCDB có:

BE = CD (cmt)

∠ABC = ∠ACB (ΔABC cân)

BC : cạnh chung.

Do đó: ΔBEC = ΔCDB (c.g.c)

b) ΔBGC cân.

Vì ΔBEC = ΔCDB (câu a) 

⇒ ∠ECB = ∠DBC (hai góc tương ứng)

⇒ ΔBGC cân tại G.

Câu c và hình chờ xíu :v  

28 tháng 4 2019

c) BC <4GD

Kẻ trung tuyến AG ⇒ G là trọng tâm của ΔABC, mà ΔABC cân (gt) ⇒ AG là phân giác của ∠BAC (∠A1 = ∠A2

AG cắt BC tại H (HB = HC)

Xét ΔABH và ΔACH có:

AB = AC (gt)

BH = HC (cmt)

AH : chung

Do đó: ΔABH = ΔACH (c.c.c)

⇒ ∠H1 = ∠H2 (hai góc tương ứng) Mà ∠H1 + ∠H2 = 180o

⇒ ∠H1 = ∠H2 = 180o : 2 = 90o hay AH ⊥ BC.

Vì ΔBGC cân tại G nên: GB = GC (hai cạnh đáy) Mà GB = 2GD 

⇒ 4GD = DB + GC.

Xét ΔBGH vuông tại H, ta có: BG > BH (định lí) (1)

Xét ΔCGH vuông tại H, ta có: CG > CH (định lí) (2)

Từ (1) và (2) suy ra: BG + CG > BH + CH

Mà GB + CG = 4GD (cmt) và CB = BH + CH

⇒ 4GD > BC 

Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc BAE chung

=>ΔABE=ΔACF

=>AE=AF

Xét ΔABC có AF/AB=AE/AC

nên FE//BC

Xét tứ giác BFEC có

FE//BC

góc FBC=góc ECB

=>BFEC là hình thang cân

Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

19 tháng 2 2020

Ai trả lời giúp tôi với ple

2 tháng 8 2019

#)Giải : (Nghĩ đi nghĩ lại mới thấy nó dễ ẹc :v)

A B C S T O

Vì BT là tia phân giác của góc \(\widehat{ABC}\)

\(\Rightarrow\widehat{SBO}=\widehat{OBC}\left(1\right)\) 

Vì CS là tia phân giác của góc \(\widehat{ACB}\)

\(\Rightarrow\widehat{TCO}=\widehat{OCB}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{SBO}=\widehat{OBC}=\widehat{TCO}=\widehat{OCB}\) hay \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\Delta ABC\) cân tại A

2 tháng 8 2019

Cái dòng này "từ (1) và (2) =>" Em nhầm rồi kìa và nếu làm thế sẽ không sử dụng ST//BC.