Biết Hãy biểu thị x theo y.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(2log_2y=2+\dfrac{1}{2}log_2x\)
=>\(log_2y^2=log_22^2+log_2x^{\dfrac{1}{2}}\)
=>\(log_2y^2=log_2\left(2^2\cdot x^{\dfrac{1}{2}}\right)\)
=>\(y^2=4\cdot x^{\dfrac{1}{2}}=4\sqrt{x}\)

Hàm số a,b là các hàm số logarit
a: \(log_{\sqrt{3}}x\)
Cơ số là \(\sqrt{3}\)
b: \(log_{2^{-2}}x\)
Cơ số là \(2^{-2}=\dfrac{1}{4}\)

Câu 3: a) Ta có: y = 3x
Cho x = 1 => y = 3 . 1 = 3
=> A(1;3)
đồi thị của hàm số y = 3x là đường thẳng đi qua gốc tọa độ và điểm A
1 2 1 2 3 -1 -2 -1 O A
b) Khi f(-1) => y = 3 . (-1) = -3
Khi f(0) => y = 3 . 0 = 0
Khi f\(\left(\frac{1}{3}\right)\Rightarrow y=3.\frac{1}{3}=1\)
c) Khi y = -3 => -3 = 3x => x = \(\frac{-3}{3}\) = -1
Khi y = 6 => 6 = 3x => x = \(\frac{6}{3}\) = 2

\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Rightarrow2^{x+\frac{1}{x}}\ge2^2=4\Rightarrow VT\ge4\)
Xét biểu thức dưới hàm logarit vế phải:
\(14-\left(y-2\right)\sqrt{y+1}=14-\left(y+1\right)\sqrt{y+1}+3\sqrt{y+1}\)
Đặt \(t=\sqrt{y+1}\ge0\) thì \(f\left(t\right)=14-t^3+3t\)
\(f'\left(t\right)=-3t^2+3=0\Rightarrow t=1\)
Dễ dạng nhận ra đây là điểm cực đại của hàm \(f\left(t\right)\)
\(\Rightarrow f\left(t\right)_{max}=f\left(1\right)=16\)
\(\Rightarrow VP\le log_216=4\le VT\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x=\frac{1}{x}\\t=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\\sqrt{y+1}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
\(\Rightarrow P=1+0+0+1=2\)
- Nếu đề là \(2^{x+\frac{1}{2}}\) thì \(VT>\sqrt{2}\) hoàn toàn ko thể đánh giá được P, vì miền giá trị của VT và VP trùng nhau 1 đoạn (x;y) rất dài cho nên sẽ có vô số giá trị P xảy ra nên mình khẳng định luôn là đề sai
Đề bài là \(2^{x+\frac{1}{2}}\) hả bạn? Với đề này thì ko giải được

Câu 1:
\(y=x^3-3x^2-2\Rightarrow y'=3x^2-6x\)
Gọi hoành độ của M là \(x_M\)
Hệ số góc của tiếp tuyến của đồ thị (C) tại M bằng 9 tương đương với:
\(f'(x_M)=3x_M^2-6x_M=9\)
\(\Leftrightarrow x_M=3\) hoặc $x_M=-1$
\(\Rightarrow y_M=-2\) hoặc \(y_M=-6\)
Vậy tiếp điểm có tọa độ (3;-2) hoặc (-1;-6)
Đáp án B
Câu 2:
Gọi hoành độ tiếp điểm là $x_0$
Hệ số góc của tiếp tuyến tại tiếp điểm là:
\(f'(x_0)=x_0^2-4x_0+3\)
Vì tt song song với \(y=3x-\frac{20}{3}\Rightarrow f'(x_0)=3\)
\(\Leftrightarrow x_0^2-4x_0+3=3\Leftrightarrow x_0=0; 4\)
Khi đó: PTTT là:
\(\left[{}\begin{matrix}y=3\left(x-0\right)+f\left(0\right)=3x+4\\y=3\left(x-4\right)+f\left(4\right)=3x-\dfrac{20}{3}\end{matrix}\right.\) (đt 2 loại vì trùng )
Do đó \(y=3x+4\Rightarrow \) đáp án A
Câu 3:
PT hoành độ giao điểm:
\(\frac{2x+1}{x-1}-(-x+m)=0\)
\(\Leftrightarrow x^2+(1-m)x+(m+1)=0\) (1)
Để 2 ĐTHS cắt nhau tại hai điểm pb thì (1) phải có hai nghiệm phân biệt
\(\Leftrightarrow \Delta=(1-m)^2-4(m+1)> 0\)
\(\Leftrightarrow m^2-6m-3> 0\)
\(\Leftrightarrow\left[{}\begin{matrix}m< 3-2\sqrt{3}\\m>3+2\sqrt{3}\end{matrix}\right.\)
Kết hợp với m nguyên và \(m\in (0;10)\Rightarrow m=7;8;9\)
Có 3 giá trị m thỏa mãn.

a: k=xy=6
b: y=6/x
c: Khi y=3 thì x=2
Khi x=-1 thì y=6
#\(N\)
`a,` Vì `x` và `y` là `2` đại lượng tỉ lệ nghịch `-> y=a/x`
Thay `x=2 , y=3 -> 3=a/2`
`-> a=6`
Vậy, hệ số tỉ lệ `a=6`
`b, y=6/x`
`c,` Đề là "tính giá trị của `y` và `x` khi `y=3 ; x=-1` phải k nhỉ? Chứ `y=3` rồi thì tính giá trị làm gì nữa ._.
Khi `y=3 -> x=6/3 = 2`
Khi `x=-1 -> y= 6/-1 = -6`

Ta có:
\(x+y+z=a\)
\(\Rightarrow\left(x+y+z\right)^2=a^2\)
Ta lại có:
\(x^2+y^2+z^2=b^2\)
\(\Rightarrow\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)=a^2-b^2\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+xz+yz\right)-x^2-y^2-z^2=a^2-b^2\)
\(\Rightarrow2\left(xy+xz+yz\right)=a^2-b^2\)
\(\Rightarrow xy+xz+yz=\dfrac{a^2-b^2}{2}\left(1\right)\)
Lại có:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=c\)
\(\Rightarrow\dfrac{yz}{xyz}+\dfrac{xz}{xyz}+\dfrac{xy}{xyz}=c\)
\(\Rightarrow\dfrac{yz+xz+xy}{xyz}=c\)
\(\Rightarrow yz+xz+xy=c.xyz\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{a^2-b^2}{2}=c.xyz\)
\(\Rightarrow\dfrac{a^2-b^2}{2c}=xyz\)
Như vậy ta có:
\(\left\{{}\begin{matrix}x+y+z=a\\xy+yz+zx=\dfrac{a^2-b^2}{2}\\xyz=\dfrac{a^2-b^2}{2c}\end{matrix}\right.\)
Ta có:
\(x^3+y^3+z^3\)
\(=\left(x+y+z\right)^3-3\left(x^2z+xyz+xz^2+x^2y+xyz+xy^2+y^2z+xyz+yz^2\right)+3xyz\)
\(=\left(x+y+z\right)^3-3\left[xz\left(x+y+z\right)+xy\left(x+y+z\right)+yz\left(x+y+z\right)\right]+3xyz\)
\(=\left(x+y+z\right)^3-3\left[\left(xy+yz+zx\right)\left(x+y+z\right)\right]+3xyz\)
\(=a^3-3\left[\dfrac{\left(a^2-b^2\right)}{c}.a\right]+3\left(\dfrac{a^2-b^2}{2c}\right)\)
\(=a^3-\dfrac{3a\left(a^2-b^2\right)}{c}+\dfrac{3\left(a^2-b^2\right)}{2c}\)
\(=a^3-\dfrac{6a\left(a^2-b^2\right)}{2c}+\dfrac{3\left(a^2-b^2\right)}{2c}\)
\(=a^3-\dfrac{6a\left(a^2-b^2\right)+3\left(a^2-b^2\right)}{2c}\)
\(=a^3-\dfrac{3\left(a^2-b^2\right)\left(2a+1\right)}{2c}\)