K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

Ta có:

22 tháng 4 2019

Ta có:

* Nếu x > 0 thì |x| = x

Ta có: 4x - 8 + |x| = 4x -  8  +x = 5x -  8

Với x = - 2  ta có: 5(- 2 ) - 8 = -5 2  - 2 2  = -7 2

* Nếu -2 < x < 0 thì |x| = -x

Ta có: 4x -  8  + |x| = 4x -  8  - x = 3x -  8

Với x = - 2  ta có: 3(- 2  ) -  8  = -3 2  - 2 2  = -5 2

a: Sửa đề: \(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)

ĐKXĐ: x∉{0;2;-2;3}

Ta có: \(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)

\(=\left\lbrack\frac{-\left(x+2\right)}{x-2}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{x+2}\right\rbrack:\frac{x\left(x-3\right)}{x^2\cdot\left(2-x\right)}\)

\(=\frac{-\left(x+2\right)^2-4x^2+\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}:\frac{x-3}{x\left(2-x\right)}\)

\(=\frac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{-x\left(x-2\right)}{x-3}\)

\(=\frac{-4x^2-8x}{x+2}\cdot\frac{-x}{x-3}=\frac{-4x\left(x+2\right)}{x+2}\cdot\frac{-x}{x-3}=\frac{4x^2}{x-3}\)

b: Để A>0 thì \(\frac{4x^2}{x-3}>0\)

=>x-3>0

=>x>3

c: |x-7|=4

=>\(\left[\begin{array}{l}x-7=4\\ x-7=-4\end{array}\right.\Rightarrow\left[\begin{array}{l}x=11\left(nhận\right)\\ x=3\left(loại\right)\end{array}\right.\)

Thay x=11 vào A, ta được:

\(A=\frac{4\cdot11^2}{11-3}=\frac{4\cdot121}{8}=\frac{121}{2}\)

30 tháng 7 2016

b) \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-\sqrt{8}+\frac{\sqrt{x^2\left(x+2\right)}}{x+2}\)

\(=4x-\sqrt{8}+\frac{x\left(x+2\right)}{x+2}\)

\(=4x-\sqrt{8}+x\)

\(=5x-\sqrt{8}\)

Với \(x=-\sqrt{2}\) ta có:

  \(5x-\sqrt{8}=5\cdot\left(-\sqrt{2}\right)-\sqrt{4\cdot2}=-5\sqrt{2}-2\sqrt{2}=-7\sqrt{2}\)

a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{x-2}\)

P
Phong
CTVHS
30 tháng 10 2023

a) ĐKXĐ: 

\(\left\{{}\begin{matrix}x^2-9\ne0\\x+3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne-3\end{matrix}\right.\Leftrightarrow x\ne\pm3\) 

b) \(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)

\(A=\dfrac{x+15}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{x+15-2x+6}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{21-x}{\left(x+3\right)\left(x-3\right)}\)

c) Thay x = - 1 vào A ta có: 

\(A=\dfrac{21-\left(-1\right)}{\left(-1+3\right)\left(-1-3\right)}=\dfrac{21+1}{2\cdot-4}=\dfrac{22}{-8}=-\dfrac{11}{4}\)

26 tháng 1 2022

1. ĐKXĐ: \(x\ne\pm1\)

 

2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)

\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-3}{x-1}\)

 

3. Tại x = 5, A có giá trị là:

\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)

 

4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)

Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)

Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)

 

1: ĐKXĐ: \(a\ge0\)

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)