Tìm số tự nhiên nhỏ nhất có bốn chữ số. Biết rằng khi chia số đó cho các số 70 ; 210 ; 350 có cùng số dư là 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi số cần tìm là a. Ta có : a – 3 chia hết cho 70 ; 210 ; 350
Do đó a – 3 ∈ BC(70; 210 ; 350) = {70 ; 140 ; ... ; 980 ; 1050 ;...}
Vì a là số nhỏ nhất có 4 chữ số nên : a – 3 = 1050 hay a = 1053.
Vậy số cần tìm là 1053.

Gọi số đó là x
ta có x chia 70 dư 3 \(x-3⋮70\)
x chia 210 dư 3 => \(x-3⋮210\) => \(x-3=BCNN\left(70;210;350\right)\)
x chia 350 dư 3 \(x-3⋮350\)
ta có 70 = 2.5.7
210 = 2.3.5.7
350 = 2.52.7
=>x-3 = 2.3.52.7 = 1050
=> x = 1050 + 3 = 1053
Vậy số cần tìm là 1053

Bài 14: Gọi số cần tìm là x
x chia 5 dư 3
=>x-3⋮5
=>x-3+5⋮5
=>x+2⋮5(1)
x chia 7 dư 5
=>x-5⋮7
=>x-5+7⋮7
=>x+2⋮7(2)
Từ (1),(2) suy ra x+2∈BC(5;7)
mà x nhỏ nhất
nên x+2=BCNN(5;7)
=>x+2=35
=>x=33
Vậy: Số cần tìm là 33
Bài 13: Gọi số cần tìm có dạng là \(\overline{ab}\)
Nếu lấy số đó chia cho tổng các chữ số của nó thì được thương là 3, dư là 5
=>\(\overline{ab}=3\cdot\left(a+b\right)+5\)
=>10a+b=3a+3b+5
=>7a-2b=5
=>(a;b)∈{(1;1);(3;8)}
Thử lại, ta thấy a=3;b=8 thỏa mãn
vậy: Số cần tìm là 38

1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Gọi số cần tìm là a. Ta có : a – 3 chia hết cho 70 ; 210 ; 350
Do đó a – 3 ∈ BC(70; 210 ; 350) = {70 ; 140 ; ... ; 980 ; 1050 ;...}
Vì a là số nhỏ nhất có 4 chữ số nên : a – 3 = 1050 hay a = 1053.
Vậy số cần tìm là 1053.