Tìm x, y nguyên thỏa mãn 2xy+ x =5y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




\(\Leftrightarrow2xy-6x-5y=18\)
\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)
\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)
Phương trình ước số cơ bản

pt này không phân tích thành nhân tử để làm được đáng lẽ ra 4y thì sẽ làm được ấy bạn
=>4xy+6x-10y=20
=>2y(2x-5)+6x-15=5
=>(2x-5)(2y+3)=5
=>\(\left(2x-5;2y+3\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;1\right);\left(5;-1\right);\left(2;-4\right);\left(0;-2\right)\right\}\)

Ta có: \(6x+5y+18=2xy\)
\(\Leftrightarrow6x+5y-2xy=-18\)
\(\Leftrightarrow2x\left(3-y\right)+5y=-18\)
\(\Leftrightarrow2x\left(3-y\right)+5y-15=-18-15\)
\(\Leftrightarrow2x\left(3-y\right)+5\left(y-3\right)=-33\)
\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-33\)
\(\Leftrightarrow\left(3-y\right)\left(2x-5\right)=-33\)
Dễ rồi

\(x^2+5y^2+2xy-4y<-3\)
=>\(x^2+2xy+y^2+4y^2-4y+1<-3+1=-2\)
=>\(\left(x+y\right)^2+\left(2y-1\right)^2<-2\)
mà \(\left(x+y\right)^2+\left(2y-1\right)^2\ge0\forall x,y\)
nên (x;y)∈∅

a) 2xy - 3x + 5y = 4
=> 2(2xy - 3x + 5y) = 8
=> 4xy + 6x + 10y = 8
=> 2x(2y + 3) + 5(2y + 3) = 23
=> (2x + 5)(2y + 3) = 23
=> 2x + 5; 2y + 3 \(\in\)Ư(23) = {1; -1; 23; -23}
Lập bảng:
2x + 5 | 1 | -1 | 23 | -23 |
2y + 3 | 23 | -23 | 1 | -1 |
x | -2 | -3 | 9 | -14 |
y | 10 | -13 | -1 | -2 |
Vậy ...

A, Ta có : 2xy + x + y = 7
=> 2(2xy + x + y) = 2 . 7
=> 4xy + 2x + 2y = 14
=> (4xy + 2x) + 2y + 1 = 14 + 1
=> 2x(2y + 1) + (2y + 1) = 15
=> (2x + 1)(2y + 1) = 15
=> 2x + 1;2y + 1 ∈ Ư(15) ∈ {-15;-5;-3;-1;1;3;5;15}
Vậy ta có bảng :
2x + 1 | -15 | -1 | -3 | -5 | 15 | 1 | 3 | 5 |
2y + 1 | -1 | -15 | -5 | -3 | 1 | 15 | 5 | 3 |
x | -8 | -1 | -2 | -3 | 7 | 0 | 1 | 2 |
y | -1 | -8 | -3 | -2 | 0 | 7 | 2 | 1 |
=> (x;y) = (-8;-1);(-1;-8);(-2;-3);(-3;-2);(7;0);(0;7);(1;2);(2;1)

a) (x-2)(2y-1)=6
=>x-2 và 2y-1 thuộc Ư(6)
lập bảng làm típ
b,c phân tích ra thành nt cũng tt a lập bảng
a) (x-2)(2y-1)=6
=>x-2 và 2y-1 thuộc Ư(6)
lập bảng làm típ
b,c phân tích ra thành nt cũng tt a lập bảng
=> 5y - 2xy =x
=>y( 5-2x) =x
=> x chia hết cho 5 -2x ; vì 5 -2x là số lẻ
=>2x chia hết cho 5 -2x
ta có 2x = 5 - ( 5-2x) chia hết cho 5 -2x
=> 5 -2x thuộc U(5) = { -5;-1;1;5}
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)