Tìm x,y,z biết: 2xy-x-y=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


2\(xy\) - \(x-y\) = 2
(2\(xy-x)\) - y = 2
\(x\).(2y - 1) = 2 + y
\(x\) = \(\frac{2+y}{2y-1}\)
vì \(x\) ∈ Z ⇔ (2 + y) ⋮ (2y - 1)
2(2+ y) ⋮ (2y - 1)
(2y + 4) ⋮ (2y - 1)
(2y -1 + 5) ⋮ (2y - 1)
5 ⋮ (2y - 1)
(2y - 1) ∈ Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
2y - 1 | -5 | -1 | 1 | 5 | |
y | -2 | 0 | 1 | 3 | |
\(x\) = \(\frac{2+y}{2y-1}\) | 0 | -2 | 3 | 1 |
"Theo bảng trên ta có:
(\(x;y\)) = (0; -2); (-2; 0); (3; 1); (1; 3)
Vậy: (x;y) = (0; -2); (-2; 0); (3; 1); (1; 3)
2xy-x-y=2
=>x(2y-1)-y=2
=>2x(y-1/2)-y+1/2=2+1/2=5/2
=>\(\left(2x-1\right)\left(y-\frac12\right)=\frac52\)
=>(2x-1)(2y-1)=5
=>(2x-1;2y-1)∈{(1;5);(5;1);(-1;-5);(-5;-1)}
=>(2x;2y)∈{(2;6);(6;2);(0;-4);(-4;0)}
=>(x;y)∈{(1;3);(3;1);(0;-2);(-2;0)}

\(2xy-x+y-2=0\)
\(\Leftrightarrow4xy-2x+2y-4=0\)
\(\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)-3=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2y-1\right)=3\)
\(\Rightarrow\left(2x+1\right)\left(2y-1\right)=1.3=3.1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)
Nếu \(2x+1=1\) thì \(2y-1=3\) \(\Rightarrow x=0\) thì \(y=2\)
Nếu \(2x+1=3\) thì \(2y-1=1\) \(\Rightarrow x=1\) thì y = \(1\)
Nếu \(2x+1=-1\) thì \(2y-1=-3\) \(\Rightarrow x=-1\) thì \(y=-1\)
Nếu \(2x+1=-3\) thì \(2y-1=-1\) \(\Rightarrow x=-2\) thì y = \(0\)
Vậy \(\left(x;y\right)=\left(-2;0\right);\left(-1;-1\right);\left(0;2\right);\left(1;1\right)\)





a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)