Cho đường tròn (O;R) và một điểm A cố định nằm ngoài đường tròn sao cho OA=2R.Từ A kẻ hai tiếp tuyến AB,AC với đường tròn (O)(B,C là hai tiếp điểm ). Một đường thẳng d thay đổi đi qua A luôn cắt đường tròn tại hai điểm D và E (D thuộc cung nhỏ BC và cung BD lớn hơn cung CD). gọi I là trung điểm của DE,H là giao điểm của AO và BC. 1) cm năm điểm A,B,C,O,I cùng thuộc một đường tròn 2)cm AH.AO=AD.AE=3R^2. 3)cm HC là tia phân giác của góc DHE. 4)gọi G là trọng tâm tam giác BDE .cm khi đường thẳng d thay đổi thì G luôn chạy trên một đường tròn cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác SAOB có
góc SAO+góc SBO=180 độ
=>SAOB là tứgiác nội tiếp
b: ΔOCD cân tại O
mà OE là trung tuyến
nên OE vuông góc CD
Xét tứ giác OESB có
góc OES+góc OBS=180 độ
=>OESB là tứ giác nội tiếp
=>góc SEB=góc SOB=1/2*góc AOB
=>góc AOB=2*góc SEB

Chu vi hình tròn:
C=pixD=0,3 x 3,14= 0,942 (dm)
=> 1/2 Chu vi= 0,471 (dm)

Đáp án B
Diện tích xung quang của hình trụ là: S 1 = 2 π R . R 3 = 2 π R 2 3
Độ dài đường sinh của hình nón là: l = R 2 + R 3 2 = 2 R
Diện tích xung quanh của hình nón là: S 2 = π R l = π R .2 R = 2 π R 2
Tính tỉ số giữa diện tích xung quang của hình trụ và diện tích xung quanh của hình nón
S 1 S 2 = 2 π R 2 3 2 π R 2 = 3