giúp với
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Những câu hỏi liên quan


16 tháng 12 2021
1: Xét tứ giác AHBE có
M là trung điểm của AB
M là trung điểm của HE
Do đó: AHBE là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBE là hình chữ nhật



L
0


NT
Nguyễn Thị Thương Hoài
Giáo viên
VIP
19 tháng 4 2023
A = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2022}{50^8}\)
A = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^8}\)
B = \(\dfrac{2023}{50^{10}}\) + \(\dfrac{2021}{5^8}\) = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{1}{50^{10}}\) + \(\dfrac{2021}{50^8}\)
Vì: \(\dfrac{1}{50^{10}}\) < \(\dfrac{1}{50^8}\) nên \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^{10}}\) < \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^8}\)
Vậy A > B
Bài 3:
a)
\(\left(x^2-5x\right)^2+10\cdot\left(x^2-5x\right)+24=0\\ \Leftrightarrow x\cdot\left(x-5\right)^2+10x\cdot\left(x-5\right)+24=0\\ \Leftrightarrow x^4-10x^3+35x^2-50x+24=0\\ \Leftrightarrow x^4-x^3-9x^3+9x^2+26x^2-26x-24x+24=0\\ \Leftrightarrow x^3\cdot\left(x-1\right)-9x^2\cdot\left(x-1\right)+26x\cdot\left(x-1\right)-24\cdot\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\cdot\left(x^3-9x^2+26x-24\right)=0\\ \Leftrightarrow\left(x-1\right)\cdot\left(x^3-2x^2-7x^2+14x+12x-24\right)=0\\ \Leftrightarrow\left(x-1\right)\cdot\left[x^2\cdot\left(x-2\right)-7x\cdot\left(x-2\right)+12\cdot\left(x-2\right)\right]=0\\ \Leftrightarrow\left(x-1\right)\cdot\left(x-2\right)\cdot\left(x^2-7x+12\right)=0\\ \)
\(\Leftrightarrow\left(x-1\right)\cdot\left(x-2\right)\cdot\left(x^2-3x-4x+12\right)=0\\ \Leftrightarrow\left(x-1\right)\cdot\left(x-2\right)\cdot\left[x\cdot\left(x-3\right)-4\cdot\left(x-3\right)\right]=0\\ \Leftrightarrow\left(x-1\right)\cdot\left(x-2\right)\cdot\left(x-3\right)\cdot\left(x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\\x-4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\\x=3\\x=4\end{matrix}\right.\)
b)
\(x\cdot\left(x+1\right)\cdot\left(x^2+x+1\right)=42\\ \Leftrightarrow x^4+2x^3+2x^2+x-42=0\\ \Leftrightarrow x^4-2x^3+4x^3-8x^2+10x^2-20x+21x-42=0\\ \Leftrightarrow x^3\cdot\left(x-2\right)+4x^2\cdot\left(x-2\right)+10x\cdot\left(x-2\right)+21\cdot\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\cdot\left(x^3+4x^2+10x+21\right)=0\\ \Leftrightarrow\left(x-2\right)\cdot\left(x^3+3x^2+x^2+3x+7x+21\right)=0\\ \Leftrightarrow\left(x-2\right)\cdot\left[x^2\cdot\left(x+3\right)+x\cdot\left(x+3\right)+7\cdot\left(x+3\right)\right]=0\\ \Leftrightarrow\left(x-2\right)\cdot\left(x+3\right)\cdot\left(x^2+x+7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c)
\(\left(5x^2+3x-2\right)^2-\left(4x^2-x-5\right)^2=0\\ \Leftrightarrow\left(5x^2+3x-2+4x^2-x-5\right)\cdot\left(5x^2+3x-2-4x^2+x+5\right)=0\\ \Leftrightarrow\left(9x^2+2x-7\right)\cdot\left(x^2+4x+3\right)=0\\ \Leftrightarrow\left(9x^2+9x-7x-7\right)\cdot\left(x^2+3x+x+3\right)=0\\ \Leftrightarrow\left[9x\cdot\left(x+1\right)-7\cdot\left(x+1\right)\right]\cdot\left[x\cdot\left(x+3\right)+\left(x+3\right)\right]=0\\ \Leftrightarrow\left(9x-7\right)\cdot\left(x+1\right)\cdot\left(x+3\right)\cdot\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\\9x-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=-3\\x=\frac{7}{9}\end{matrix}\right.\)
Bài 2:
a)
\(x^2-6x+9=49\\ \Leftrightarrow x^2-6x+9-49=0\\ \Leftrightarrow x^2-6x-40=0\\ \Leftrightarrow x^2+4x-10x-40=0\\ \Leftrightarrow x\cdot\left(x+4\right)-10\cdot\left(x+4\right)=0\\ \Leftrightarrow\left(x-10\right)\cdot\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-10=0\\x+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)
b)
\(x^3-2x^2-x+2=0\\ \Leftrightarrow x^2\cdot\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x^2-1\right)\cdot\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\cdot\left(x+1\right)\cdot\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)
c)
\(x^3-3x^2-6x+8=0\\ \Leftrightarrow x^3-2x^2-8x-x^2+2x+8=0\\ \Leftrightarrow x^2\cdot\left(x-1\right)-2x\cdot\left(x-1\right)-8\cdot\left(x-1\right)=0\\ \Leftrightarrow\left(x^2-2x-8\right)\cdot\left(x-1\right)=0\\ \Leftrightarrow\left(x^2+2x-4x-8\right)\cdot\left(x-1\right)=0\\ \Leftrightarrow\left[x\cdot\left(x+2\right)-4\cdot\left(x+2\right)\right]\cdot\left(x-1\right)=0\\ \Leftrightarrow\left(x-4\right)\cdot\left(x+2\right)\cdot\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-4=0\\x+2=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\x=-2\\x=1\end{matrix}\right.\)
d)
\(x^4+2x^3+5x^2+4x-12=0\\ \Leftrightarrow x^4+3x^3+8x^2+12x-x^3-3x^2-8x-12=0\\ \Leftrightarrow x^3\cdot\left(x-1\right)+3x^2\cdot\left(x-1\right)+8x\cdot\left(x-1\right)+12\cdot\left(x-1\right)=0\\ \Leftrightarrow\left(x^3+3x^2+8x+12\right)\cdot\left(x-1\right)=0\\ \Leftrightarrow\left(x^3+x^2+6x+2x^2+2x+12\right)\cdot\left(x-1\right)=0\\ \Leftrightarrow\left[x^2\cdot\left(x+2\right)+x\cdot\left(x+2\right)+6\cdot\left(x+2\right)\right]\cdot\left(x-1\right)=0\\ \Leftrightarrow\left(x^2+x+6\right)\cdot\left(x+2\right)\cdot\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)