|x||y|+x^2+y^2=xy^3+35-4^5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a/
\(\left(x+y\right)^2=x^2+y^2+2xy=\left(-2\right)^2\)
\(\Leftrightarrow x^2+y^2-2.35=4\Leftrightarrow x^2+y^2=74\)
\(\Rightarrow\left(x^2+y^2\right)^2=x^4+y^4+2x^2y^2=74^2\)
\(\Rightarrow x^4+y^4=74^2-2.\left(-35\right)^2\)
b/
\(\left(x^4+y^4\right)\left(x+y\right)=x^5+x^4y+xy^4+y^5\)
\(\Leftrightarrow x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-xy\left(x^3+y^3\right)\)(1)
Ta có
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Thay các giá trị đã tính được vào (1) Bạn tự tính nốt nhé
Bạn thấy số giúp mình đc ko tại mình hơi yếu phần này

Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK N

`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.
`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`
`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`
`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.

Ta có
x + x2 + x3 + x4 = y + y2 + y3 + y4
<=> (x - y) + (x2 - y2) + (x3 - y2) + (x4 - y4) = 0
<=> (x - y)[1 + x + y + x2 + xy + y2 + (x2 + y2)(x + y)]
<=> (x - y)(2 + 2x + 2y + xy)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\2+2x+2y+xy=0\end{cases}}\)
Tới đây bạn tự giải tiếp nhé. Tính không giải đâu mà thấy bạn nhờ nên mới giải tiếp
1/ \(\hept{\begin{cases}x+y+xy=5\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=6\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)
Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\end{cases}}\)thì hệ thành
\(\hept{\begin{cases}ab=6\\a^5+B^5=35\end{cases}}\)
\(\Rightarrow a^5+\frac{6^5}{a^5}=35\)
PT này vô nghiệm vậy pt ban đầu vô nghiệm

a) \(\frac{x}{y}=\frac{5}{7}\Rightarrow\frac{x}{5}=\frac{y}{7}\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\frac{xy}{5.7}=\frac{35}{35}=1\)
\(\Rightarrow\hept{\begin{cases}\left(\frac{x}{5}\right)^2=1\Rightarrow\frac{x^2}{25}=1\Rightarrow x^2=1.25=25=5^2\\\left(\frac{y}{7}\right)^2=1\Rightarrow\frac{y^2}{49}=1\Rightarrow y^2=1.49=49=7^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\in\text{{}5;-5\\y\in\text{{}7;-7\end{cases}}\)
Vậy ...
d) (Đừng chép vội, đọc dòng cuối đi)
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}.\frac{1}{2}=\frac{y}{2}.\frac{1}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)
\(y=4z\Rightarrow\frac{y}{4}=\frac{z}{1}\)Ngoặc "}'' 2 điều lại
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{1}=\frac{x-y+z}{6-4+1}=\frac{2}{3}\)
Không biết phần d bạn có chép sai đề không ? Chứ tính đáp án nó không phù hợp

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

Tìm x,y,z:
a) Ta có : \(\frac{x}{y}=\frac{5}{7}=\frac{x}{5}=\frac{y}{7}\)
Áp dụng tính chất dãy các tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{7}=>\left(\frac{x}{5^{ }}\right)^2\)\(=\left(\frac{y}{7}\right)^2\)=\(\frac{x.y}{5.7}\)= \(\frac{35}{35}\)=1
Do đó:
\(\left(\frac{x}{5}\right)^2\)=1 => \(\frac{x}{5}\)=1 hoặc -1 => x = 5 hoặc -5
\(\left(\frac{y}{7^{ }}\right)^2\)=1=> \(\frac{y}{7}\)=1 hoặc -1 => 7 hoặc -7
Vì 35 > 0 với mọi x , y
=> x, y cùng dấu
Vậy ( x,y) thuộc ( 5;7) và (-5; -7)
/Còn lại tự làm tự xem trình độ/

a.
\(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4+y^4=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4-x^4+y^4\)
\(=\left(x^4-x^4\right)+\left(y^4-y^4\right)+\left(x^3y-x^3y\right)+\left(xy^3-xy^3\right)+\left(x^2y^2-x^2y^2\right)=0\)
b.
\(\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)=2+4x-x-2x^2+1+x-x^4-x^3+5x^2+5\)
\(=-x^4-x^3+\left(5x^2-2x^2\right)+\left(4x-x+x\right)+\left(1+2+5\right)=-x^4-x^3+3x^2+4x+8\)
c.
\(\left(x^2-7\right)\left(x+2\right)-\left(2x-1\right)\left(x-14\right)+x\left(x^2-2x-22\right)+35=x^3+2x^2-7x-14-2x^2+28x+x-14+x^3-2x^2-22x+35\)
\(=\left(x^3+x^3\right)+\left(2x^2-2x^2\right)+\left(28x-22x-7x+x\right)+\left(35-14\right)=2x^3+21\)