9.tìm tỉ lệ x/y.biết x,y thoả mãn :
2x-y/x+y=2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+4y-x\sqrt3=\left(y-2\right)\sqrt3+3\)
=>\(\begin{cases}-x=y-2\\ x+4y=3\end{cases}\Rightarrow\begin{cases}x=-y+2\\ -y+2+4y=3\end{cases}\)
=>\(\begin{cases}x=-y+2\\ 3y=1\end{cases}\Rightarrow\begin{cases}y=\frac13\\ x=-\frac13+2=2-\frac13=\frac53\end{cases}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-2y}{5-2\cdot6}=\dfrac{-4}{-1}=4\)
Do đó: x=20; y=12
\(\Rightarrow3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-2y}{5-6}=\dfrac{-4}{-1}=4\\ \Rightarrow\left\{{}\begin{matrix}x=20\\y=12\end{matrix}\right.\)
Bài 1: a, Tìm GTNN của A = ∣x - 3∣ + ∣x - 4∣ + ∣x - 7∣ b, Tìm x, y thoả mãn ∣x - 2∣ + ∣ y²⁰ + 9∣ = 9
a.
\(A=\left|x-3\right|+\left|x-4\right|+\left|x-7\right|\)
\(A=\left|x-3\right|+\left|7-x\right|+\left|x-4\right|\)
Áp dụng BĐT trị tuyệt đối:
\(A\ge\left|x-3+7-x\right|+\left|x-4\right|\)
\(\Rightarrow A\ge4+\left|x-4\right|\ge4\)
\(\Rightarrow A_{min}=4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)\ge0\\x-4=0\end{matrix}\right.\) \(\Rightarrow x=4\)
Câu b đã giải bên dưới
tham khảo nha https://olm.vn/hoi-dap/detail/2810649382.html