\(\frac{2}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)
Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)
\(\Leftrightarrow4x-2-6x-3=4\)
\(\Leftrightarrow-2x=9\)
\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)
Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)
\(b,ĐKXĐ:x\ne\pm1;-3\)
Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)
\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)
\(\Leftrightarrow9x^2+14x+13=0\)
\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)
\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)
Pt vô nghiệm
\(c,ĐKXĐ:x\ne1\)
Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)
Kết hợp vs ĐKXĐ được x = -1
Vậy pt có nghiệm duy nhất x = -1
làm lần lượt nha(bài nào k bt bỏ qua)
\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow-2x-5=4\)
\(\Rightarrow-2x=9\)
\(\Rightarrow x=\frac{9}{-2}\)

\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Rightarrow\frac{x^2+x+1}{x^3-1}+\frac{2x^2-5}{x^3-1}=\frac{4\left(x-1\right)}{x^3-1}\)
\(\Rightarrow x^2+x+1+2x^2-5=4x-4\)
\(\Rightarrow3x^2-3x=0\)
\(\Rightarrow3x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

a) \(\frac{x+3}{x-2}-\frac{2x+3}{x+2}=\frac{2x^2+5x+12}{x^2-4}\)
ĐKXĐ: \(\left\{\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
\(\Rightarrow\left(x+3\right)\left(x+2\right)-\left(2x+3\right)\left(x-2\right)=2x^2+5x+12\)
\(\Leftrightarrow x^2+2x+3x+6-2x^2+4x-3x+6-2x^2-5x-12=0\)
\(\Leftrightarrow-3x^2+4x=0\)
\(\Leftrightarrow3x^2-4x=0\)
\(\Leftrightarrow x\left(3x-4\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x=0\\3x-4=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\3x=4\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\left(tmđk\right)\\x=\frac{4}{3}\left(tmđk\right)\end{matrix}\right.\)
Vậy: \(x=0;\frac{4}{3}\)
_Chúc bạn học tốt_
b) Ta có: \(\frac{2x+5}{x-3}+\frac{x-1}{x+3}=\frac{x^2+6x+18}{x^2-9}\)
ĐKXĐ: \(\left\{\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)
\(\Leftrightarrow\frac{\left(2x+5\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{x^2+6x+18}{\left(x+3\right)\left(x-3\right)}\)
\(\Rightarrow\left(2x+5\right)\left(x+3\right)+\left(x-1\right)\left(x-3\right)=x^2+6x-18\)
\(\Leftrightarrow2x^2+6x+5x+15+x^2-3x-x+3-x^2-6x-18=0\)
\(\Leftrightarrow2x^2+x=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\2x=-1\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x=0;-\frac{1}{2}\)
_Chúc bạn học tốt_

\(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}ĐKXĐ:x\ne-1;-3\)
\(\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)
\(2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x+1\right)\left(x-1\right)\)
\(4x^2+12x+18=-2x-5x^2+5\)
\(4x^2+12x+18+2x+5x^2-5=0\)
\(9x^2-14x+13=0\)
=> vô nghiệm

a, 2(4x - 7 ) = 3(x + 1) + 18
⇌ 8x -14 = 3x + 3 + 18
⇌ 5x = 35 ⇌ x = 7
→ S = \(\left\{7\right\}\)
b, ( 2x - 1 )2 - 4x ( x - 3 ) = -11
⇌ 4x2 - 2x + 1 - 4x2 + 12 = -11
⇌ 10x = -12
⇌ x = \(-\frac{12}{10}\)
→ S = \(\left\{-\frac{12}{10}\right\}\)
c, ( 2x - 5 )2 - ( x + 2 )2 = 0
⇌ ( 2x - 5 -x + 2 )2 = 0
⇌ ( x - 3 )2 = 0
⇌ x - 3 = 0 ⇌ x = 3
→ S = \(\left\{3\right\}\)
d, ( x - 6 ) ( x + 1 ) = 2(x + 1)
⇌ ( x - 6 - 2 ) ( x+ 1) = 0
⇌ x2 - 7x - 8 =0
⇌ ( x - 8 ) ( x + 1 ) = 0
⇒\(\left\{{}\begin{matrix}x-8=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-1\end{matrix}\right.\)
→ S = \(\left\{8;-1\right\}\)
e, \(\frac{x-3}{2}=2-\frac{1-2x}{5}\)
⇌ 5( x - 3) = 20 - 2(1 - 2x)
⇌ 5x - 4x = 15 + 20 + 2
⇌ x = 37
→ S = \(\left\{37\right\}\)
g, \(\frac{3x+2}{2}+\frac{5-2x}{3}=\frac{11}{6}\)
⇌ 3(3x + 2) + 2(5 - 2x) = 11
⇌ 6x + 6 + 10 - 4x = 11
⇌ 2x = -5
⇌ x = \(-\frac{5}{2}\)
→ S = \(\left\{-\frac{5}{2}\right\}\)
h, \(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{9x-66}{x^2-4}\)
⇌ (x - 2)2 - 3(x - 2) = 9x - 66
⇌ x2 - 4x + 4 - 3x - 6 = 9x - 66
⇌ x2 -16 + 64 = 0
⇌ (x - 8)2 = 0
⇌ x - 8 = 0
⇌ x = 8
→ S = \(\left\{8\right\}\)

17) \(ĐKXĐ:x\ne1\)
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1-3x^2-2x^2+2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow-4x^2+3x+1=0\)
\(\Leftrightarrow-\left(x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-\frac{1}{4}\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{4}\right\}\)
18) \(ĐKXĐ:x\ne1\)
\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow3x^2-3x=0\)
\(\Leftrightarrow3x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=1\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)
19) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\\x\ne\frac{1}{2}\end{cases}}\)
\(\frac{x+4}{2x^3-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Leftrightarrow\frac{x+4}{\left(2x-1\right)\left(x-2\right)}+\frac{x+1}{\left(2x-1\right)\left(x-3\right)}-\frac{2x+5}{\left(2x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-12+x^2-x-2-2x^2-x+10}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow-x-4=0\)
\(\Leftrightarrow x=-4\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{-4\right\}\)
20) \(ĐKXĐ:x\ne0\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}-\frac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)\left(x^2-x+1\right)-x\left(x-1\right)\left(x^2+x+1\right)-3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
\(\Leftrightarrow x^4+x-x^4+x-3=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\frac{3}{2}\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{2}\right\}\)

Đặt x2 + 2x = a ta có
\(\frac{1}{a-3}\)+ \(\frac{18}{a+2}\)= \(\frac{18}{a+1}\)
<=> a2 - 15a + 56 = 0
<=> a = (7;8)
Thế vô tìm được nghiệm
Mình nghĩ phải sửa lại x+1 thành x-1 nha bạn ơi.
\(\frac{2}{x-1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{18}{x^2-x+3x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{18}{x\left(x-1\right)+3\left(x-1\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2\left(x+3\right)+18}{\left(x-1\right)\left(x+3\right)}=\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{2x+6+18}{\left(x-1\right)\left(x+3\right)}=\frac{2x^2-2x-5x+5}{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{2x+24}{\left(x-1\right)\left(x+3\right)}=\frac{2x^2-7x+5}{\left(x-1\right)\left(x+3\right)}\)
\(\Rightarrow2x+24=2x^2-7x+5\)
\(\Leftrightarrow2x+24-2x^2+7x-5=0\)
\(\Leftrightarrow-2x^2+9x+19=0\)
Từ đây giải nốt nha bạn
\(ĐKXĐ:x\ne\pm1;x\ne-3\)
\(\frac{2}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Rightarrow\frac{x^2+2x-3}{\left(x^2-1\right)\left(x+3\right)}+\frac{18\left(x+1\right)}{\left(x^2-1\right)\left(x+3\right)}=\frac{\left(x^2-1\right)\left(2x-5\right)}{\left(x^2-1\right)\left(x+3\right)}\)
\(\Rightarrow\frac{x^2+2x-3}{\left(x^2-1\right)\left(x+3\right)}+\frac{18x+18}{\left(x^2-1\right)\left(x+3\right)}=\frac{\left(x^2-1\right)\left(2x-5\right)}{\left(x^2-1\right)\left(x+3\right)}\)
\(\Rightarrow\frac{x^2+20x+15}{\left(x^2-1\right)\left(x+3\right)}=\frac{\left(x^2-1\right)\left(2x-5\right)}{\left(x^2-1\right)\left(x+3\right)}\)
\(\Rightarrow x^2+20x+15=\left(x^2-1\right)\left(2x-5\right)\)
\(\Rightarrow x^2+20x+15=x^3-5x^2-2x+5\)
\(\Rightarrow x^3-6x^2-22x-10=0\)
Giải nghiệm ta được ba nghiệm:
\(\left(\frac{-2103}{988};\frac{-5056}{9331};8,67\right)\)