tim x để( x^2+16):(x+3) là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐKXĐ: x<>-1
Đặt \(P=\dfrac{6}{x+1}\cdot\dfrac{x-1}{3}\)
\(P=\dfrac{6}{x+1}\cdot\dfrac{x-1}{3}=\dfrac{6\left(x-1\right)}{3\left(x+1\right)}=\dfrac{2\left(x-1\right)}{x+1}=\dfrac{2x-2}{x+1}\)
Để P là số nguyên thì \(2x-2⋮x+1\)
=>\(2x+2-4⋮x+1\)
=>\(-4⋮x+1\)
=>\(x+1\inƯ\left(-4\right)\)
=>\(x+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{0;-2;1;-3;3;-5\right\}\)

P=n3+4n-5=n3-n+5n-5=n(n2-1)+5(n-1)
=n(n-1)(n+1)+5(n-1)=(n-1)[n(n+1)+5]
=(n-1)(n2+n+5)
Vì n \(\in\) N nên n2+n+5 > 1
Để P là số nguyên tố thì n-1=1=>n=2
Thử lại thấy n=2 thỏa mãn
Vậy n=2

để A = 3x + 2/x - 3 nguyên
=> 3x + 2 ⋮ x - 3
=> 3x - 9 + 11 ⋮ x - 3
=> 3(x - 3) + 11 ⋮ x - 3
=> 11 ⋮ x - 3
=> x - 3 thuộc Ư(11)
=> x - 3 thuộc {-1; 1; -11; 11}
=> x thuộc {2; 4; -8; 14}
Ftea.me am làm đúng rồi. cô tick xanh cho em nhưng lần sau em nhớ thêm đkxđ : \(x\ne\) 3

Điều kiện: \(x\ne2\)
Phân tích tử thức: \(x^4-16=\left(x^2\right)^2-4^2=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)
Phân tích mẫu thức: \(x^4-4x^3+8x^2-16x+16=\left(x^4-4x^3+4x^2\right)+\left(4x^2-16x+16\right)\)
\(=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)
Ta có: \(P=\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}\)
Để P là số nguyên thì \(x-2\inƯ\left(4\right)\)
\(\Rightarrow x-2\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}\)
Điều kiện: x\ne2x̸=2
Phân tích tử thức: x^4-16=\left(x^2\right)^2-4^2=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)x4−16=(x2)2−42=(x2−4)(x2+4)=(x−2)(x+2)(x2+4)
Phân tích mẫu thức: x^4-4x^3+8x^2-16x+16=\left(x^4-4x^3+4x^2\right)+\left(4x^2-16x+16\right)x4−4x3+8x2−16x+16=(x4−4x3+4x2)+(4x2−16x+16)
=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)=\left(x-2\right)^2\left(x^2+4\right)=x2(x2−4x+4)+4(x2−4x+4)=(x−2)2(x2+4)
Ta có: P=\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}P=(x−2)2(x2+4)(x−2)(x+2)(x2+4)=x−2x+2=x−2(x−2)+4=1+x−24
Để P là số nguyên thì x-2\inƯ\left(4\right)x−2∈Ư(4)
\Rightarrow x-2\in\left\{-4;-2;-1;1;2;4\right\}⇒x−2∈{−4;−2;−1;1;2;4}
\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}⇒x∈{−2;0;1;3;4;6}

2)\(A=\frac{6x-5}{3x+1}=\frac{6x+2-7}{3x+1}=\frac{2\left(3x+1\right)-7}{3x+1}=2-\frac{7}{3x+1}\)
Do đó, để A nhận giá trị nguyên thì 7 chia hết cho 3x+1 hay (3x+1)EƯ(7)={1;-1;7;-7}
=>3xE{0;-2;6;-8}
=>xE{0;2}
*)Nếu x=0 thì A=2-\(\frac{7}{3\cdot0+1}=2-7=-5\)
*)Nếu x=2 thì A=2-\(\frac{7}{3\cdot2+1}=2-1=1\)
=>Để A có GTNN thì x=0
Vậy để A nhận giá trị nguyên thì xE{0;2}
Để A có GTNN là -5 thì x=0


a) Để \(\frac{11}{\sqrt{x}-5}\)nhận giá trị nguyên thì \(\sqrt{\text{x}}-5\inƯ\left(11\right)\)(DK : \(0\le x\ne25\))
Vì \(\sqrt{\text{x}}-5\ge-5\)nên ta có :
\(\sqrt{x}-5\in\left\{-1;1;11\right\}\)\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\Rightarrow x\in\left\{16;36;256\right\}\)
b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)(DK : \(0\le x\ne9\))
Để B nhận giá trị nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)\)
Vì \(\sqrt{\text{x}}-3\ge-3\)nên ta có :
\(\sqrt{\text{x}}-3\in\left\{-2;-1;1;2;4\right\}\)\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)

Ta có: A = \(\frac{x+1}{x-2}=\frac{\left(x-2\right)+3}{x-2}\) \(=\frac{x-2}{x-2}+\frac{3}{x-2}\)
\(=1+\frac{3}{x-2}\)
Để A nguyên thì 3/x-2 nguyên
<=> (x - 2) \(\in\) Ư(3)
=> (x - 2) \(\in\) {-3;-1;1;3}
=> x \(\in\) {-1;1;3;5}
Ta có: để phép chia x2+16 cho x+3 đạt giá trị nguyên thì:
\(x^2+16⋮\left(x+3\right)\)
Ta có: \(x^2+16⋮\left(x+3\right)\)
\(\Leftrightarrow x^2-9+25⋮\left(x+3\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+25⋮\left(x+3\right)\)
Mà vì \(\left(x+3\right)⋮\left(x+3\right)\) nên\(\left(x-3\right)\left(x+3\right)⋮\left(x+3\right)\)
Suy ra \(25⋮\left(x+3\right)\)
\(\Rightarrow x+3\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
TH1: \(x+3=\pm1\Leftrightarrow\left[{}\begin{matrix}x+3=1\\x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
TH2:\(x+3=\pm5\Leftrightarrow\left[{}\begin{matrix}x+3=5\\x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
TH3:\(x+3=\pm25\Leftrightarrow\left[{}\begin{matrix}x+3=25\\x+3=-25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=22\\x=-28\end{matrix}\right.\)
Vậy \(x\in\left\{-2;-4;2;-8;22;-28\right\}\)