A=1+2 mũ 2 + 2 mũ 3 + ... + 2 mũ 60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5

bn ơi chia hết cho 21 và 15 hay là chia hết cho số 21,15 vậy?
Chứng minh A chia hết cho \(21\) \(A\) được viết dưới dạng tổng: \(A=2^{1}+2^{2}+2^{3}+\dots +2^{60}\). Để chứng minh \(A\) chia hết cho \(21\), cần chứng minh \(A\) chia hết cho \(3\) và \(7\). Chứng minh A chia hết cho \(3\) \(A\) được nhóm thành các bộ \(2\) số hạng: \(A=(2^{1}+2^{2})+(2^{3}+2^{4})+\dots +(2^{59}+2^{60})\). \(A=2(1+2)+2^{3}(1+2)+\dots +2^{59}(1+2)\). \(A=2\cdot 3+2^{3}\cdot 3+\dots +2^{59}\cdot 3\). \(A=3(2+2^{3}+\dots +2^{59})\). Vì \(A\) có thừa số \(3\), nên \(A\) chia hết cho \(3\). Chứng minh A chia hết cho \(7\) \(A\) được nhóm thành các bộ \(3\) số hạng: \(A=(2^{1}+2^{2}+2^{3})+(2^{4}+2^{5}+2^{6})+\dots +(2^{58}+2^{59}+2^{60})\). \(A=2(1+2+2^{2})+2^{4}(1+2+2^{2})+\dots +2^{58}(1+2+2^{2})\). \(A=2\cdot 7+2^{4}\cdot 7+\dots +2^{58}\cdot 7\). \(A=7(2+2^{4}+\dots +2^{58})\). Vì \(A\) có thừa số \(7\), nên \(A\) chia hết cho \(7\). Vì \(A\) chia hết cho \(3\) và \(A\) chia hết cho \(7\), và \(3\) và \(7\) là hai số nguyên tố cùng nhau, nên \(A\) chia hết cho \(3\cdot 7=21\). Chứng minh A chia hết cho \(15\) Để chứng minh \(A\) chia hết cho \(15\), cần chứng minh \(A\) chia hết cho \(3\) và \(5\). Chứng minh A chia hết cho \(3\) Phần này đã được chứng minh ở trên. \(A\) chia hết cho \(3\). Chứng minh A chia hết cho \(5\) \(A\) được nhóm thành các bộ \(4\) số hạng: \(A=(2^{1}+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8})+\dots +(2^{57}+2^{58}+2^{59}+2^{60})\). \(A=2(1+2+2^{2}+2^{3})+2^{5}(1+2+2^{2}+2^{3})+\dots +2^{57}(1+2+2^{2}+2^{3})\). \(A=2(1+2+4+8)+2^{5}(1+2+4+8)+\dots +2^{57}(1+2+4+8)\). \(A=2\cdot 15+2^{5}\cdot 15+\dots +2^{57}\cdot 15\). \(A=15(2+2^{5}+\dots +2^{57})\). Vì \(A\) có thừa số \(15\), nên \(A\) chia hết cho \(15\). Kết luận \(A\) chia hết cho \(21\) và \(A\) chia hết cho \(15\).
\(A=1+2^2+2^3+....+2^{60}\)
\(\Rightarrow2A=2+2^3+3^4+...+2^{61}\)
\(\Rightarrow A=2^{61}-2-1\)
Đặt B=2^2+2^3+....+2^60
<=>2B=2^3+2^4+....+2^61
<=>2B-B=(2^3+2^4+....+2^61)-(2^2+2^3+....+2^60)
<=>B=2^61-2^2
<=>B=2^61-4
=>A=1+B
<=>A=1+2^61-4
=>A=2^61-3
vậy A=2^61-3