Cho các số tự nhiên a,b thỏa mãn ab+1 chia hết cho 24. Cmr: a+b chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.

a. Theo đề => x \(\in\)BC(24, 180)
Ta có: 24=23.3; 180 = 22.32.5
=> BCNN(24, 180)=23.32.5=360
=> x \(\in\)BC(24,180)=B(360)={0; 360; 720; 1080;...}
Mà 0 < x < 1000
Vậy x \(\in\){360; 720}.
b. +) Nếu n chẵn thì n=2k
Ta có: (n+4).(n+7) = (2k+4).(2k+7) = 2.(k+2).(2k+7) chia hết cho 2 nên là số chẵn.
+) Nếu n lẻ thì n=2k+1
Ta có: (n+4).(n+7) = (2k+1+4).(2k+1+7) = (2k+5).(2k+8) = (2k+5).2.(k+4) chia hết cho 2 nên là số chẵn.
Vậy...

xét m tận cùng bằng 0 hoặc 5=>mn chia hết cho 5
xét m lẻ=>m4 có tận cùng bằng 1
=>24.m4+1 có tận cùng bằng 5
=>n có tận cùng bằng 5
=>mn chia hết cho 5
xét m chẵn=>m4 có tận cùng bằng 6
=>24.m4+1 có tận cùng bằng 5
=>n có tận cùng bằng 5
=>mn chia hết cho 5
từ các dữ liệu trên=>mn chia hết cho 5
=>đpcm

a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3.
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí)
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3
b) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5.
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4.
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí)
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí).
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5

7n + 24 chia hết cho n + 1
⇒7n + 7 + 17 chia hết cho n + 1
⇒7(n + 1) + 17 chia hết cho n + 1
⇒17 chia hết cho n + 1
⇒n + 1 ∈ Ư(17) = {1; -1; 17; -17}
Mà n ∈ N
⇒n + 1 ∈ {1; 17}
⇒n ∈ {0; 16}
Vậy ...
7n + 24 = 7n + 7 + 17 = 7(n + 1) + 17
Để (7n + 24) ⋮ (n + 1) thì 17 ⋮ (n + 1)
⇒ n + 1 ∈ Ư(17) = {-17; -1; 1; 17}
⇒ n ∈ {-18; -2; 0; 16)
Mà n ∈ ℕ
⇒ n ∈ {0; 16}