Cho hàm số y=\(\sqrt{2x-x^2}\) , tính giá trị biểu thức A=y3.yn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(A=x^3+y^3+3xy\)
\(=x^3+y^3+3xy\left(x+y\right)\) (do \(x+y=1\))
\(=x^3+3x^2y+3xy^2+y^3\)
\(=\left(x+y\right)^3\) \(=1\)
b) \(B=x^3-y^3-3xy\)
\(=x^3-y^3-3xy\left(x-y\right)\) (do \(x-y=1\))
\(=x^3-3x^2y+3xy^2-y^3\)
\(=\left(x-y\right)^3\) \(=1\)

\(a,A=x^2+y^2\\=x^2-2xy+y^2+2xy\\=(x-y)^2+2xy\\=2^2+2\cdot1\\=4+2\\=6\)
\(b,x+y=1\\\Leftrightarrow (x+y)^3=1^3\\\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\\\Leftrightarrow x^3+3xy(x+y)+y^3=1\\\Leftrightarrow x^3+3xy\cdot1+y^3=1\\\Rightarrow A=1\)
a) Ta có:
\(x-y=2\)
\(\Rightarrow\left(x-y\right)^2=2^2\)
\(\Rightarrow x^2-2xy+y^2=4\)
Mà: \(xy=1\)
\(\Rightarrow\left(x^2+y^2\right)-2\cdot1=4\)
\(\Rightarrow x^2+y^2=4+2\)
\(\Rightarrow x^2+y^2=6\)
b) Ta có:
\(x+y=1\)
\(\Rightarrow\left(x+y\right)^3=1^3\)
\(\Rightarrow x^3+3x^2y+3xy+y^3=1\)
\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\)
Mà: x + y = 1
\(\Rightarrow x^3+3xy\cdot1+y^3=1\)
\(\Rightarrow x^3+3xy+y^3=1\)

Câu 15:
1: Sửa đề: Chứng minh AH⊥BC
Xét (O) có
ΔBMC nội tiếp
BC là đường kính
Do đó: ΔBMC vuông tại M
=>CM⊥AB tại M
Xét (O) có
ΔBNC nội tiếp
BC là đường kính
Do đó: ΔBNC vuông tại N
=>BN⊥AC tại N
Gọi K là giao điểm của AH và BC
Xét ΔABC có
BN,CM là các đường cao
BN cắt CM tại H
Do đó: H là trực tâm của ΔABC
=>AH⊥BC tại K
2: ΔAMH vuông tại M
mà ME là đường trung tuyến
nên ME=EH=EA
ME=EH
=>ΔEMH cân tại E
=>\(\hat{EMH}=\hat{EHM}\)
mà \(\hat{EHM}=\hat{KHC}\) (hai góc đối đỉnh)
nên \(\hat{EMH}=\hat{KHC}\)
ΔOMC cân tại O
=>\(\hat{OMC}=\hat{OCM}\)
\(\hat{OME}=\hat{OMC}+\hat{EMC}\)
\(=\hat{OCM}+\hat{KHC}=90^0\)
=>ME⊥MO tại M
=>ME là tiếp tuyến của (O) tại M
3: ΔANH vuông tại N
mà NE là đường trung tuyến
nên NE=EH=EM
EM=EN nên E nằm trên đường trung trực của MN(1)
OM=ON
nên O nằm trên đường trung trực của MN(2)
Từ (1),(2) suy ra EO là đường trung trực của MN
=>EO⊥MN tại I và I là trung điểm của MN
Xét ΔEMO vuông tại M có MI là đường cao
nên \(MI\cdot EO=ME\cdot MO\)
=>\(2\cdot ME\cdot MO=2\cdot MI\cdot EO=EO\cdot MN\)
Câu 14:
a: Sửa đề: Cho hàm số y=2x-4
Vẽ đồ thị:
b: Thay x=0 vào y=x-3, ta được:
y=0-3=-3
=>A(0;-3)
Thay y=0 vào y=2x+1, ta được:
2x+1=0
=>2x=-1
=>\(x=-\frac12\)
=>B(-1/2;0)
Thay x=0 và y=-3 vào y=ax+b, ta được:
\(a\cdot0+b=-3\)
=>b=-3
=>y=ax-3
Thay x=-1/2 và y=0 vào y=ax-3, ta được:
\(a\cdot\frac{-1}{2}-3=0\)
=>\(-\frac12a=3\)
=>a=-6

A=2(x3-y3)-3(x+y)2
A=2(x-y)(x2+xy+y2)-3(x2+2xy+y2)
A=2.2(x2+xy+y2)-3(x2+2xy+y2)
A=4(x2+xy+y2)-3x2+6xy+3y2
A=4x2+4xy+y2-3x2-6xy+3y2
A=x2-2xy+y2
A=(x-y)2
A= 22
A=4
\(y^3y^n\) là gì hả bạn?