Chứng minh rằng : A = 1/3^2 + 1/4^2 + 1/5^2 + ... + 1/10^2 < 1/2
Giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
A=111+121+...+701
\(A = \left(\right. \frac{1}{11} + \frac{1}{12} + . . . + \frac{1}{20} \left.\right) + \left(\right. \frac{1}{21} + \frac{1}{22} + . . . + \frac{1}{30} \left.\right)\)
\(+ \left(\right. \frac{1}{31} + \frac{1}{32} + . . . + \frac{1}{40} \left.\right) + \left(\right. \frac{1}{41} + \frac{1}{42} + . . . + \frac{1}{50} \left.\right) + \left(\right. \frac{1}{51} + \frac{1}{52} + . . . + \frac{1}{60} \left.\right)\)
\(+ \left(\right. \frac{1}{61} + \frac{1}{62} + . . . + \frac{1}{70} \left.\right)\)
\(\Rightarrow A < \frac{1}{10} \cdot 10 + \frac{1}{20} \cdot 10 + \frac{1}{30} \cdot 10 + . . . + \frac{1}{60} \cdot 10\)
\(A < 1 + \frac{1}{2} + \frac{1}{3} + . . . + \frac{1}{6}\)
\(A < 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{6} + \left(\right. \frac{1}{4} + \frac{1}{5} \left.\right)\)
\(A < 2 + 0 , 45 < 2 , 5\)
A= 11 1 + 12 1 +...+ 70 1 A = ( 1 11 + 1 12 + . . . + 1 20 ) + ( 1 21 + 1 22 + . . . + 1 30 ) A=( 11 1 + 12 1 +...+ 20 1 )+( 21 1 + 22 1 +...+ 30 1 ) + ( 1 31 + 1 32 + . . . + 1 40 ) + ( 1 41 + 1 42 + . . . + 1 50 ) + ( 1 51 + 1 52 + . . . + 1 60 ) +( 31 1 + 32 1 +...+ 40 1 )+( 41 1 + 42 1 +...+ 50 1 )+( 51 1 + 52 1 +...+ 60 1 ) + ( 1 61 + 1 62 + . . . + 1 70 ) +( 61 1 + 62 1 +...+ 70 1 ) ⇒ A < 1 10 ⋅ 10 + 1 20 ⋅ 10 + 1 30 ⋅ 10 + . . . + 1 60 ⋅ 10 ⇒A< 10 1 ⋅10+ 20 1 ⋅10+ 30 1 ⋅10+...+ 60 1 ⋅10 A < 1 + 1 2 + 1 3 + . . . + 1 6 A<1+ 2 1 + 3 1 +...+ 6 1 A < 1 + 1 2 + 1 3 + 1 6 + ( 1 4 + 1 5 ) A<1+ 2 1 + 3 1 + 6 1 +( 4 1 + 5 1 ) A < 2 + 0 , 45 < 2 , 5 A<2+0,45<2,5
Đây qu, phiền bạn tick giup mình nha
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(< 1-\frac{1}{100}< 1\)
=> đpcm
tối nay mk sẽ trả lời , đợi nha, mk đi hk đã
ta có:
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\),
\(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}...\)
\(\frac{1}{10^2}=\frac{1}{10\cdot10}< \frac{1}{9\cdot10}\)
Từ trên => A < \(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
=> \(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{9}-\frac{1}{10}\)
=> \(A< \frac{1}{2}-\frac{1}{10}=\frac{5}{10}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)
=> \(A< \frac{2}{5}\)mà \(\frac{2}{5}< \frac{1}{2}\)
=> \(A< \frac{1}{2}\)=> \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< \frac{1}{2}\)
Chúc bn học tốt !