Tìm x;y;z là các số nguyên không âm thỏa mãn
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=6xyz\)và \(\left(x^3+y^3+z^3+1\right)⋮\left(x+y+z+1\right)\)
(Trích trong đề thi HSG ở trường mình, mình chưa làm được)
Các bạn giúp mình với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(aaaa:x=a\Rightarrow aaaa:a=x\Rightarrow x=1111\)
b) \(x\times a=a0a0a0\Rightarrow x=a0a0a0:a\Rightarrow x=101010\)
Để M có giá trị nguyên thì x - 2 chia hết cho x + 3
=> (x + 3) - 5 chia hét cho x + 3
=> 5 chia hết cho x + 3
=> x + 3 thuộc Ư(5) = {-1;1;-5;5}
Ta có:
x + 3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |
Bài này chỉ vận dụng phân tích đa thức thành nhân tử thôi
Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=6xyz\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-xz\right)=6xyz\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=3xyz\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=3xyz\left(x+y+z\right)\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=3xyz\left(x+y+z\right)\)
\(\Leftrightarrow x^2+y^3+z^3=3xyz\left(x+y+z+1\right)\)
Do đó: \(x^3+y^3+z^3+1=3xyz\left(x+y+z+1\right)+1⋮x+y+z+1\)
Suy ra: \(1⋮x+y+z+1\)
\(\Rightarrow x+y+z+1=1\)( do \(x,y,z\ge0\Rightarrow x+y+z+1\ge1\))
\(\Leftrightarrow x=y=z=0\)
Vậy \(x=y=z=0\)