tìm x,y nguyên để \(x-y+2xy=7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a) \(\left(x+y+1\right)^3=x^3+y^3+7\)
\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)
\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.
Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).
- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)
Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).
- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).
Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).
Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)
b) \(y^2+2xy-8x^2-5x=2\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)
\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)
\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)
\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)
\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)
\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.
Lập bảng:
6y-12x-5 | 1 | 47 | -1 | -47 |
24x+6y+5 | 47 | 1 | -47 | -1 |
x | 1 | \(\dfrac{-14}{9}\left(l\right)\) | \(\dfrac{-14}{9}\left(l\right)\) | 1 |
y | 3 | \(\dfrac{50}{9}\left(l\right)\) | \(-\dfrac{22}{9}\left(l\right)\) | -5 |
Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)


có 2xy +x +y = 7
(2xy + x)+y = 7
x. (2+y)+1.(2+y)=9
(2+y) . (x+1) = 9
Mà x;y E Z =>2+y ; x+1 E Z
=>2+y ; x+1 E ư (9)={1 ; -1 ; 3 ; -3 ; 9 ; -9}
BGT
x+1 | 1 | -1 | 3 | -3 | 1 | -1 | 9 | -9 | 3 | -3 |
x | 0 | -2 | 2 | -4 | 0 | -2 | 8 | -10 | 2 | -4 |
2+y | 3 | -3 | 1 | -1 | 9 | -9 | 1 | -1 | 9 | -9 |
y | 1 | -5 | -1 | -3 | 7 | -11 | -1 | -3 | 7 | -11 |
vậy (x;y)=(0;1) ; (-2;-5) ; (2;-1) ; (-4;-3) ; (0;7) ; (-2;-11) ; (8;-1) ; (-10;-3) ; (2;7) ; (-4;-11)
mik là ng trả lời đầu tiên nên cũng ko chắc lắm nhé bn :>>
2xy + x + y = 7
x(2y + 1) + y = 7
2.[x(2y +1) + y ] = 2.7
2x(2y + 1) + 2y = 14
2x(2y+1) + 2y + 1 = 14 +1
2x(2y+1) + (2y +1) = 15
(2y+1).(2x+1) = 15
Vì x, y thuộc Z nên 2x+1 và 2y+1 là ước của 15
*(mình làm đến đây bạn tự kẻ bảng nhé)

\(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)
\(\Leftrightarrow\left(x+y^2\right)+7.\left(x+y\right)+\dfrac{49}{4}+y^2-\dfrac{9}{4}=0\)
\(\Leftrightarrow\left(x+y+\dfrac{7}{2}^2\right)=\dfrac{9}{4}-y^2\)
\(Do\left(x+y+\dfrac{7}{2}^2\right)\ge0\Rightarrow\dfrac{9}{4}-y^2\ge0\Rightarrow y^2\le\dfrac{9}{4}\)
Mà y nguyên \(\Rightarrow\left\{{}\begin{matrix}y^2\\\\y^2=1\end{matrix}\right.=0\)
Thay vào phương trình đầu:
Với \(y=0\Rightarrow x^2+7x+10=0\Rightarrow\left\{{}\begin{matrix}x=-2\\\\\\x=-5\end{matrix}\right.\)
Với \(y=1\Rightarrow x^2+9x+19=0\Rightarrow\) không có x nguyên
Với \(y=-1\Rightarrow x^2+5x+5=0\Rightarrow\) không có x nguyên

a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}

Lời giải:
$x-y+2xy=7$
$(x+2xy)-y=7$
$x(1+2y)-y=7$
$2x(1+2y)-2y=14$
$2x(1+2y)-(2y+1)=13$
$(1+2y)(2x-1)=13$
Với $x,y$ nguyên thì $1+2y, 2x-1$ cũng là số nguyên. Mà $(2y+1)(2x-1)=13$ nên $2x-1, 2y+1$ là ước của $13$.
Để $x$ nhỏ nhất thì $2x-1$ là số nguyên nhỏ nhất sao cho $2x-1$ là ước của $13$
$\Rightarrow 2x-1=-13$
$\Rightarrow x=-6$

x2 - 2x - 11 = y2
<=> (x2 - 2x + 1) - y2 = 12
<=> (x - 1)2 - y2 = 12
<=> (x + y - 1)(x - y - 1) = 12
Lập bảng xét các trường hợp
x - y - 1 | 1 | 12 | -1 | -12 | 2 | 6 | -2 | -6 | 3 | 4 | -3 | -4 |
x + y - 1 | 12 | 1 | -12 | -1 | 6 | 2 | -6 | -2 | 4 | 3 | -4 | -3 |
x | 7,5(loại) | 7,5(loại) | -5,5(loại) | -5,5(loại) | 5 | 5 | -3 | -3 | 4,5(loại) | 4,5(loại) | -2,5(loại) | -2,5 (loại) |
y | | | | | | | | | 2 | -2 | -2 | 2 | | | | | | | | |
Vậy các cặp (x;y) thỏa là (5;2) ; (5 ; -2) ; (-3; -2) ; (-3 ; 2)

2xy - 6x + y = - 7
2xy - 2x.3 + y = - 7
2x(y - 3) + y = - 7
2x(y - 3) + y - 3 = - 10
(2x + 1)(y - 3) = - 10
=> 2x + 1 và y - 3 là ước của - 10
=> Ư(- 10) = { ± 1; ± 2; ± 5 ± 10 }
Vì 2x + 1 là số lẻ => 2x + 1 = { ± 1; ± 5 }
Nếu 2x + 1 = 5 thì y - 3 = - 2 => x = 2 thì y = 1
Nếu 2x + 1 = 1 thì y - 3 = - 10 => x = 0 thì y = - 7
Nếu 2x + 1 = - 1 thì y - 3 = 10 => x = - 1 thì y = 13
Nếu 2x + 1 = - 5 thì y - 3 = 2 => x = - 3 thì y = 5
Vậy ( x;y ) = { ( 2;1 ); ( 0;-7 ); ( -1;13 ); ( -3;5 ) }