Bộ GD&ĐT cấm dạy thêm: Giải pháp nào dành cho nhà trường và giáo viên?
🔥 Xem ngay Bộ đề kiểm tra giữa kỳ II năm học 2024 - 2025
Chinh phục Đấu trường thử thách OLM hoàn toàn mới, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR với \(\forall n\ge1\)ta có
\(5^{2n-1}.2^{2n-1}.5^{n+1}+3^{n+1}.2^{2n-1}⋮38\)
CMR với V \(n\ge1\) ta có:
52n-1.22n-1.5n+1+3n+1.22n-1 chia hết cho 38
Câu tương tự
cmr:
\(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}....\dfrac{2n-1}{2n}\le\dfrac{1}{\sqrt{3n+1}}\left(\forall n\ge1\right)\)
CMR với mọi n > hoặc băng 1 ta có
52n-1.22n-15n+1+3n+1.22n-1 chia hết cho 38
Chứng minh rằng \(2^{n+1}.5^{2n-1}+2^{2n-1}.3^{n+1}⋮38\left(n\in N,n\ge1\right)\)
CMR \(\forall n\in\)N* ta có
\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+...+\left(\frac{1}{2n-1}-\frac{1}{2n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)
Cmr: \(5^{2n-1}.2^{n+1}+2^{2n-1}.3^{n+1}⋮38\) ( n ∈ N* )
Chứng minh rằng: \(5^{2n-1}.2^{2n-1}.5^{n+1}+3^{n+1}.2^{2n-1}=2^n\left(5^{2n-1}.10+9.6^{n-1}\right)\)
Với \(n\ge1\)
Chứng minh rằng \(5^{n-1}.2^{2n-1}.5^{n+1}+3^{n+1}.2^{2n-1}=2^n\left(5^{2n-1}.10+9.6^{n-1}\right)\)
CMR voi moi so tu nhien n thi
A=5^2n+1*2^n+2+3^n+2*2^2n+1 chia het cho 38