K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

TH1 3m-1/2n là dương suy ra 3m-1 chia hết cho 2n

Để 3m-1 chia hết cho 2n suy ra 3m-1 là chẵn

                                           suy ra 3m là lẻ

                                           suy ra m là lẻ  và n có thể là bất kì số nào(n,m thuộc N)

TH2     

3n-1/2m là dương suy ra 3n-1 chia hết cho 2m

Để 3n-1 chia hết cho 2m suy ra 3n-1 là chẵn

                                           suy ra 3n là lẻ

                                           suy ra n là lẻ  và m có thể là bất kì số nào(n,m thuộc N)

vậy n,m là lẻ

19 tháng 2 2019

THỬ lại đi sai rùi

15 tháng 3 2020

đặt \(p^{2m}+q^{2m}=a^2\)

Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1

\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2

\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )

\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2

giả sử p = 2

\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)

\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)

\(\Rightarrow q^n⋮2\)

\(\Rightarrow q⋮2\)

\(\Rightarrow q=2\)

Thay p = q = 2 vào, ta được :

\(4^m+4^n=a^2\)

giả sử \(m\ge n\)

Đặt \(m=n+z\)

Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)

vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương

Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm

24 tháng 3 2020

Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.

Nếu ai cần thì cứ nhắn tin vs mik nha.

10 tháng 2 2018

khổ qua hya là xem trên mạng ý

19 tháng 9

a cần tìm các số nguyên dương \(m\)\(n\) sao cho:

\(A = \frac{3 m - 1}{2 n} \text{v} \overset{ˋ}{\text{a}} B = \frac{3 n - 1}{2 m}\)

đều là các số nguyên dương.


Bước 1: Phân tích điều kiện

Ta có:

  • \(A = \frac{3 m - 1}{2 n} \in \mathbb{Z}^{+}\)
  • \(B = \frac{3 n - 1}{2 m} \in \mathbb{Z}^{+}\)

Suy ra:

  • \(2 n \mid \left(\right. 3 m - 1 \left.\right)\) hay \(3 m - 1 \equiv 0 \left(\right. m o d 2 n \left.\right)\)
  • \(2 m \mid \left(\right. 3 n - 1 \left.\right)\) hay \(3 n - 1 \equiv 0 \left(\right. m o d 2 m \left.\right)\)

Bước 2: Dùng thử vài giá trị nhỏ

Thử với \(m = 1\):

  • \(A = \frac{3 \left(\right. 1 \left.\right) - 1}{2 n} = \frac{2}{2 n} = \frac{1}{n}\) → không nguyên trừ khi \(n = 1\)
    • Nếu \(m = 1 , n = 1\)\(A = \frac{2}{2} = 1\), \(B = \frac{2}{2} = 1\)

Thử \(m = 2\):

  • \(A = \frac{6 - 1}{2 n} = \frac{5}{2 n}\)
    • Không nguyên trừ khi \(2 n = 1\) hoặc 5 ⇒ không có \(n \in \mathbb{Z}^{+}\) phù hợp

Thử \(m = 3\):

  • \(A = \frac{9 - 1}{2 n} = \frac{8}{2 n} = \frac{4}{n}\)
    • Để nguyên ⇒ \(n \in \left{\right. 1 , 2 , 4 \left.\right}\)

Thử với các giá trị \(n\) trên:

  • \(n = 1\): \(B = \frac{3 \left(\right. 1 \left.\right) - 1}{2 \cdot 3} = \frac{2}{6} = \frac{1}{3}\)
  • \(n = 2\): \(B = \frac{6 - 1}{6} = \frac{5}{6}\)
  • \(n = 4\): \(B = \frac{12 - 1}{6} = \frac{11}{6}\)

Không thỏa mãn.


Quay lại với cặp đúng đã tìm được:

\(\left(\right. m , n \left.\right) = \left(\right. 1 , 1 \left.\right) \Rightarrow A = 1 , B = 1 (đ \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{nguy} \hat{\text{e}} \text{n}\&\text{nbsp};\text{d}ưo\text{ng})\)


Bước 3: Giả sử \(A = a , B = b \in \mathbb{Z}^{+}\)

Từ:

\(\frac{3 m - 1}{2 n} = a \Rightarrow 3 m - 1 = 2 a n \Rightarrow 3 m = 2 a n + 1 \Rightarrow m = \frac{2 a n + 1}{3}\)

Tương tự:

\(\frac{3 n - 1}{2 m} = b \Rightarrow 3 n - 1 = 2 b m \Rightarrow 3 n = 2 b m + 1 \Rightarrow n = \frac{2 b m + 1}{3}\)

Thế \(m\) từ biểu thức 1 vào biểu thức 2:

\(n = \frac{2 b \cdot \left(\right. \frac{2 a n + 1}{3} \left.\right) + 1}{3} = \frac{\frac{4 a b n + 2 b}{3} + 1}{3} = \frac{4 a b n + 2 b + 3}{9}\)

Đặt \(x = n\), phương trình:

\(x = \frac{4 a b x + 2 b + 3}{9} \Rightarrow 9 x = 4 a b x + 2 b + 3 \Rightarrow x \left(\right. 9 - 4 a b \left.\right) = 2 b + 3\)

\(x = \frac{2 b + 3}{9 - 4 a b}\)

Để \(x = n \in \mathbb{Z}^{+}\), mẫu phải chia hết tử ⇒ xét vài giá trị \(a , b\)


Thử \(a = 1 , b = 1\):

\(x = \frac{2 \left(\right. 1 \left.\right) + 3}{9 - 4 \left(\right. 1 \left.\right) \left(\right. 1 \left.\right)} = \frac{5}{5} = 1 \Rightarrow n = 1 \Rightarrow m = \frac{2 \left(\right. 1 \left.\right) \left(\right. 1 \left.\right) + 1}{3} = \frac{3}{3} = 1\)

✅ Đúng rồi.


Các cặp khác?

Thử \(a = 2 , b = 1\):

\(x = \frac{2 \left(\right. 1 \left.\right) + 3}{9 - 4 \left(\right. 2 \left.\right) \left(\right. 1 \left.\right)} = \frac{5}{9 - 8} = \frac{5}{1} = 5 \Rightarrow n = 5 \Rightarrow m = \frac{2 \left(\right. 2 \left.\right) \left(\right. 5 \left.\right) + 1}{3} = \frac{21}{3} = 7\)

Kiểm tra:

  • \(A = \frac{3 \cdot 7 - 1}{2 \cdot 5} = \frac{20}{10} = 2\)
  • \(B = \frac{3 \cdot 5 - 1}{2 \cdot 7} = \frac{14}{14} = 1\)

✅ Đúng.


Kết luận:

Các cặp \(\left(\right. m , n \left.\right)\) nguyên dương sao cho cả hai biểu thức đều nguyên dương gồm:

  • \(\left(\right. 1 , 1 \left.\right)\)
  • \(\left(\right. 7 , 5 \left.\right)\)

Bạn có thể tìm thêm bằng cách thử các giá trị \(a , b \in \mathbb{Z}^{+}\) nhỏ, dùng công thức:

\(n = \frac{2 b + 3}{9 - 4 a b} , m = \frac{2 a n + 1}{3}\)

19 tháng 2 2019

tìm các số nguyên dương m,n sao cho \(\frac{3m-1}{2n}\)và \(\frac{3n-1}{2m}\)cùn là các số nguyên dương

8 tháng 11 2014

theo các bạn là đề như thế nào

 

8 tháng 11 2014

phải là 2m/n và 2n/m chứ nhỉ?

 

24 tháng 1 2016

\(A=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=1+m\)

\(B=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=1+n\)

do A<B=>1+m<1+n=>m<n

24 tháng 1 2016

Ta có: A=\(\frac{\frac{\left(2m+2\right)\left[\frac{2m-2}{2}+1\right]}{2}}{m}=\frac{\frac{2\left(m+1\right)m}{2}}{m}=\frac{\left(m+1\right)}{m}\)=m+1

B= \(\frac{\frac{\left(2n+2\right)\left[\frac{2n-2}{2}+1\right]}{2}}{n}=\frac{\frac{2\left(n+1\right)n}{2}}{n}=\frac{\left(n+1\right)n}{n}\)=n+1

Mà A<B

=>m+1<n+1

=>m<n

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0