K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu a) đề sai

Câu b)

undefined

4 tháng 7 2023

\(A+B\\ =x^5y^2+7x^2y^4+5xy^3+xy+2+x^2y^4+5xy^3+x^5y^2\\ =\left(x^5y^2+x^5y^2\right)+\left(7x^2y^4+x^2y^4\right)+\left(5xy^3+5xy^3\right)+xy+2\\ =2x^5y^2+8x^2y^4+10xy^3+xy+2\)

`@` `\text {Ans}`

`\downarrow`

`A + B`

`= (x^5y^2 + 7x^2y^4 + 5xy^3 + xy + 2) + (x^2y^4 + 5xy^3 + x^5y^2)`

`= x^5y^2 + 7x^2y^4 + 5xy^3 + xy + 2 + x^2y^4 + 5xy^3 + x^5y^2`

`= (x^5y^2 + x^5y^2) + (7x^2y^4+ x^2y^4) + (5xy^3+ 5xy^3) + xy + 2`

`= 2x^5y^2 + 8x^2y^4 + 10xy^3 + xy + 2`

a: \(A=-4x^5y^3-2x^2y^3z^2-2y^4\)

b: \(B=-4x^5y^3-2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3=-4x^5y^3+\dfrac{1}{5}x^4y^3-\dfrac{8}{3}y^4\)

23 tháng 5 2022

\(A=x^4+y^4-2x^3-2x^2y^2+x^2-2y^3+y^2\)

\(A=\left(x^4-2x^2y^2+y^4\right)-2\left(x^3+y^3\right)+\left(x^2+y^2\right)\)

\(A=\left(x^2-y^2\right)^2-2\left(x^3+y^3\right)+\left(x^2+y^2\right)\)

\(A=\left[\left(x-y\right)\left(x+y\right)\right]^2-2\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x^2+y^2\right)\)

\(A=\left(x-y\right)^2-2\left(x^2-xy+y^2\right)+\left(x^2+y^2\right)\)

\(A=x^2-2xy+y^2-2x^2+2xy-2y^2+x^2+y^2\)

\(A=0\)

a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)

\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)

P=\(A+B=x^2y^2-x^2-3\)

\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)

b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)

6 tháng 7 2023

loading...  

6 tháng 7 2023

Từ x8+x4y4+y8=(x4+y4)2-x4y4=(x4+y4-x2y2(x4+y4+x2y2)=4(x4+y4-x2y2) =8
=>(x4+y4-x2y2)=2=>x4+y4=2+x2y2  kết hợp với x4+y4+x2y2=4
=> 2+x2y2+x2y2=4 => x2y2=1 (x4y4 sẽ = 1 nốt ) => x4+y4=3 và x8+y8=7
Xét (x4+y4)3=x12+y12+3x4y4(x4+y4)=x12+y12+3.1.3=33=27
=>x12+y12=18=> A = 18+1=19

20 giờ trước (17:11)

a) Tính A - B và B - A:

Cho hai đa thức:

A=x2y+2xy2−7x2y2+x4A = x^2y + 2xy^2 - 7x^2y^2 + x^4

B=5x2y2−2y2x−yx2−3x4−1B = 5x^2y^2 - 2y^2x - yx^2 - 3x^4 - 1

1. Tính A - B:

\[ A - B = (x^2y + 2xy^2 - 7x2y2 + x^4) - (5x2y2 - 2y^2x - yx^2 - 3x^4 - 1) \]

= x2y+2xy2−7x2y2+x4−5x2y2+2xy2+yx2+3x4+1x^2y + 2xy^2 - 7x^2y^2 + x^4 - 5x^2y^2 + 2xy^2 + yx^2 + 3x^4 + 1

= x2y+2xy2−12x2y2+4x4+1x^2y + 2xy^2 - 12x^2y^2 + 4x^4 + 1

2. Tính B - A:

\[ B - A = (5x2y2 - 2y^2x - yx^2 - 3x^4 - 1) - (x^2y + 2xy^2 - 7x2y2 + x^4) \]

= 5x2y2−2y2x−yx2−3x4−1−x2y−2xy2+7x2y2−x45x^2y^2 - 2y^2x - yx^2 - 3x^4 - 1 - x^2y - 2xy^2 + 7x^2y^2 - x^4

= 12x2y2−2xy2−yx2−4x4−112x^2y^2 - 2xy^2 - yx^2 - 4x^4 - 1

b) Tìm GTLN của đa thức A + B:

\[ A + B = (x^2y + 2xy^2 - 7x2y2 + x^4) + (5x2y2 - 2y^2x - yx^2 - 3x^4 - 1) \]

= x2y+2xy2−2x2y2−2y2x−2x4−1x^2y + 2xy^2 - 2x^2y^2 - 2y^2x - 2x^4 - 1

Với đa thức A+B=x2y+2xy2−2x2y2−2y2x−2x4−1A + B = x^2y + 2xy^2 - 2x^2y^2 - 2y^2x - 2x^4 - 1, để tìm giá trị lớn nhất, ta cần phải khảo sát hàm số bằng cách đạo hàm theo biến x và y rồi tìm các giá trị cực đại trên miền xác định của biến x và y. Tuy nhiên, việc này thường phức tạp và cần các kỹ thuật tính toán sâu hơn, không thể thực hiện một cách ngắn gọn.

13 tháng 11 2021

D

13 tháng 11 2021

D