K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) => 2xy +3x=y+1

=> 2xy+3x-y=1

=> x(2y+3) -  1/2 (2y+3) +3/2 =1

=> (x-1/2)(2y+3)=1-3/2= -1/2

=> (2x-1)(2y+3)=-1

ta có bảng

...........

11 tháng 4 2020

x(2y+3) = y +1 => y+1 chia hết cho 2y +3 

                         => 2y + 2 chia hết cho 2y +3 

                         => 2y + 3 - 1 chia hết cho 2y + 3 

                         => -1 chia hết cho 2y +3

                          => 2y + 3 = -1 

2y +3 = -1 = > y = -2  =>  -x = -1 => x=1

2y + 3 = 1 => y = 1 => x = 0

11 tháng 4 2020

Ta có : x .( 2y+ 3 ) = y + 1 

=> ( y + 1 ) \(⋮\)( 2y + 3 ) 

=> \(\left(2y+2\right)⋮\left(2y+3\right)\)

=> ( 2y + 3 - 1 ) \(⋮\) ( 2y+ 3 ) 

=> - 1 \(⋮\) ( 2y + 3 )

=> ( 2y+ 3 ) \(\in\left\{1;-1\right\}\)

TH1 : 

2y + 3 =-1 <=> y = -2 

                  =>  x = 1 

TH2 : 

2y + 3 = 1 <=> y = -1

                 => x = 0 

Vậy ta có các cặp số nguyên ( x , y ) thỏa mãn là : ( 0 , -1 ) ; ( 1 ; -2 ) 

19 tháng 5 2016

 Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

19 tháng 5 2016

Nguyễn Thị Mai copy trên mạng,ko tính

23 tháng 6 2017

Ta có:

\(x^3+y^3-xy=7\)

\(\left(x+y\right)^3-3xy\left(x+y\right)-xy=7\)

Thay x+y = 3 ta dc:

\(3^3-9xy-xy=7\)

\(-10xy=-20\)

\(xy=2\)

Vậy, tập hợp x, y thoả mãn đaẻng thức là: {x,y thuộc R/xy=2}

DH
Đỗ Hoàn
CTVHS VIP
16 tháng 8

\(a)x+y+61=10\sqrt{x}+12\sqrt{y}(đk:x,y>0)\)

\(\Leftrightarrow(x-10\sqrt{x}+25)+(y-12\sqrt{y}+36)=0\)

\(\Leftrightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2=0\)

\((\sqrt{x}-5)2\ge0\) với \(\forall\) \(x\ge0\); \((\sqrt{y}-6)^2\ge\) với \(\forall y\ge0\) với \(\forall x,y\ge0\)

\(\Rightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2\ge0\)

dấu " = " xảy ra khi \(\begin{cases}x=25\\ y=36\end{cases}\)