K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

bài này số lẻ quá khó làm

Ta có : \(5x^2+2y^2-6xy+16x-8y+16=0\)

\(\Leftrightarrow10x^2+4y^2-12xy+32x-16y+32=0\)

\(\Leftrightarrow\left(4y^2-2.2y.3x+9x^2\right)+x^2+32x-16y+32=0\)

\(\Leftrightarrow\left(2y-3x\right)^2-2.4.\left(2y-3x\right)+16+x^2+8x+16=0\)

\(\Leftrightarrow\left(2y-3x-4\right)^2+\left(x+4\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(2y-3x-4\right)^2=0\\\left(x+4\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-4\end{matrix}\right.\)

Vậy \(\left(x,y\right)=\left(-4,4\right)\)

21 tháng 10 2018

     \(5x^2+2y^2-6xy+16x-8y+16=0\)

\(\Rightarrow10x^2+4y^2-12xy+32x-16y+32=0\)

\(\Rightarrow\left(9x^2-12xy+4y^2\right)+\left(24x-16y\right)+16+\left(x^2+8x+16\right)=0\)

\(\Rightarrow\left(3x-2y\right)^2+2.\left(3x-2y\right).4+4^2+\left(x+4\right)^2=0\)

\(\Rightarrow\left(3x-2y+4\right)^2+\left(x+4\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}3x-2y+4=0\\x+4=0\end{cases}\Rightarrow}\hept{\begin{cases}-12-2y+4=0\\x=-4\end{cases}\Rightarrow\hept{\begin{cases}y=-4\\x=-4\end{cases}}}\)

Vậy \(x=y=-4\)

18 tháng 10 2021

b: \(8x^2-48x+6xy-36y\)

\(=8x\left(x-6\right)+6y\left(x-6\right)\)

\(=2\left(x-6\right)\left(4x+3y\right)\)

d: \(a^2-2ab+b^2-4\)

\(=\left(a-b\right)^2-4\)

\(=\left(a-b-2\right)\left(a-b+2\right)\)

12 tháng 7 2017

a)\(y^4+4(2x-3)y^2-48x-48y+155=0\)

\(\Leftrightarrow y^4+8y^2x+16(9-3y)-12(y^2+4x)+11=0\)

\(\Leftrightarrow(y^2+4x)^2-12(y^2+4x)+11=0\)

<=>....

b)\(y^2-5x^2-4xy+16x-8y+16=0\)

\(\Leftrightarrow-\left(5x-y+4\right)\left(x+y-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y=4-x\\y=5x+4\end{cases}}\)

tới đây nhìn vào pt thứ 1 là thấy 1 sự dễ ko hề nhẹ

c)\(pt\left(1\right)\Leftrightarrow2x\left(x+y\right)+2y^2=8x-2\)

cộng theo vế pt(1) vừa tương đương vs pt 2

\(\Leftrightarrow x\left(\left(x+y\right)^2+2\left(x+y\right)-15\right)=0\)

....

Hướng dẫn thui nhé sắp bão to nên phải off r` ko lm dc tiếp thì ib :333

12 tháng 7 2017

câu 1 có vấn đề , (2x+3) , ko phải (2x-3) 

14 tháng 9 2018

k mk nhé!

thanks!

14 tháng 9 2018

(=)\(\hept{\begin{cases}y^2=\left(5x+4\right)\left(4-x\right)\left(1\right)\\y^2-4xy-8y+\left(16x-5x^2+16\right)=0\left(2\right)\end{cases}}\)

Thế (1) vào (2) ta được: (2) (=) 2y-4xy -8y =0 (=) y2 - 2xy - 4y =0 (=) y(y-2x-4)=0 (=) y=0 hoặc y=2x +4

Với y=0 => x=-4/5 hoặc x=4

Với y=2x+2. Thế vào (1) ta được x=0 và y=4

4 tháng 9 2021

undefined

NV
26 tháng 3 2019

\(y^2-2\left(2x+4\right)y-5x^2+16x+16=0\)

\(\Delta'=\left(2x+4\right)^2+5x^2-16x-16=9x^2\)

\(\Rightarrow\left\{{}\begin{matrix}y=2x+4+3x=5x+4\\y=2x+4-3x=4-x\end{matrix}\right.\)

- Với \(y=5x+4\) thay vào pt đầu:

\(\left(5x+4\right)^2-\left(5x+4\right)\left(4-x\right)=0\Rightarrow...\)

- Với \(y=4-x\) thay vào pt đầu:

\(\left(4-x\right)^2-\left(4-x\right)\left(5x+4\right)=0\Rightarrow...\)

16 tháng 12 2018

\(10x\left(x-y\right)-6y\left(y-x\right)\)

\(=10x\left(x-y\right)+6x\left(x-y\right)\)

\(=\left(10x+6x\right)\left(x-y\right)\)

\(c,3x^2+5y-3xy-5x\)

\(=\left(3x^2-3xy\right)+\left(5y-5x\right)\)

\(=3x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(3x-5\right)\left(x-y\right)\)

\(e,27+27x+9x^2=3\left(9+9x+x^2\right)\)

16 tháng 12 2018

\(f,8x^3-12x^2y+6xy^2-y^3\)

\(=\left(2x-y\right)^3\)

\(g,x^3+8y^3=x^3+\left(2y\right)^3\)

\(=\left(x+2y\right)\left(x^2-2xy+4x^2\right)\)

\(i,x^2-25-2xy+y^2\)

\(\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2\)

\(=\left(x-y-5\right)\left(x-y+5\right)\)

12 tháng 10 2019

a) \(x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=0\\y=1\end{cases}\Rightarrow}x=-1}\)

Vậy x=-1 ; y=1

NV
7 tháng 1 2021

\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)

\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)

\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)

\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)

\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương

7 tháng 1 2021

Thanks nhìu :))