cho 2 số thực a và b . CMR \(ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Thôi chắc mình tự trả lời cho mn tham khảo quá.
Áp dụng BĐT Cauchy dạng :\(\frac{x+y}{2}\ge\sqrt{x+y}\Leftrightarrow x+y\ge2\sqrt{xy}\)
Dấu "=" xảy ra khi : x = y
Ta có :
\(ab+\frac{a}{b}\ge2.\sqrt{ab.\frac{a}{b}}=2\sqrt{a^2}=2a\)
Tương tự : \(\frac{a}{b}+\frac{b}{a}\ge2\)
\(ab+\frac{b}{a}\ge2b\)
Cộng vế với vế ta được :
\(2\left(ab+\frac{a}{b}+\frac{b}{a}\right)\ge2\left(a+b+1\right)\)
\(\Leftrightarrow ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\left(đpcm\right)\)

\(\frac{a}{b^2+bc+c^2}+\frac{b}{c^2+ca+a^2}+\frac{c}{a^2+ab+b^2}=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{bc^2+abc+ba^2}+\frac{c^2}{ca^2+abc+cb^2}\) (1)
Áp dụng BDT Cauchy-Schwarz: \(\left(1\right)\ge\frac{\left(a+b+c\right)^2}{ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+3abc}\)
Lại có: \(ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+3abc=\left(ab+bc+ac\right)\left(a+b+c\right)\)
Thay vào -> dpcm

\(VT=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{c^2b+abc+a^2b}+\frac{c^2}{a^2c+abc+b^2c}\)
Áp dụng BĐT Cauchy dạng phân thức
\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)
\(\Leftrightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}\)
\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)
\(\Leftrightarrow VT\ge\frac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)
Dấu "=" xảy ra khi a=b=c
Chúc bạn học tốt !!!

\(VT=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{c^2b+abc+a^2b}+\frac{c^2}{a^2c+abc+b^2c}\)
Áp dụng bđt Cauchy dạng phân thức
\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)
\(\Leftrightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}\)
\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)
\(\Leftrightarrow VT\ge\frac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c\)
Chúc bạn học tốt !!!

\(VT=\frac{ab}{ab+c}+\frac{ac}{ac+b}+\frac{bc}{bc+a}\)
\(=\frac{ab}{ab+\left(a+b+c\right)c}+\frac{ac}{ac+\left(a+b+c\right)b}+\frac{bc}{bc+\left(a+b+c\right)a}\)
\(=\frac{ab}{\left(b+c\right)\left(c+a\right)}+\frac{ac}{\left(a+b\right)\left(b+c\right)}+\frac{bc}{\left(a+b\right)\left(c+a\right)}\)
\(=\frac{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Cần chứng minh \(\frac{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}\)
\(\Leftrightarrow a^2b+a^2c+ab^2+ac^2+b^2c+bc^2\ge6abc\)
BĐT cuối luôn đúng theo AM-GM