K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Sửa đề câu a là chia hết 59.

a, \(5^{n+3}-3.5^{n+1}+2^{6n+3}\)

\(=125.5^n-3.5.5^n+8.64^n\)

\(=110.5^n+8.64^n=\left(118-18\right).5^n+8.64^n\)

\(=118.5^n+8.\left(64^n-5^n\right)=2.59.5^n+8.59.P\)

\(=59\left(2.5^n+8.P\right)⋮59\)

17 tháng 8 2018

(118 -8 ) nhé, ấn nhầm mất -.-

13 tháng 2 2022

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

24 tháng 1 2021

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó  nên 

       * Vậy A chia hết cho 27

6 tháng 3 2017

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Chứng  minh   J = 10 n + 18 n − 1  chia hết cho 9.

Bước 2. Chứng minh  J = 10 n + 18 n − 1  chia hết cho 3.

Ta có:

J = 10 n + 18 n − 1 = 10 n − 1 + 18 n ⇒ J = 99...9 + 18 n ⇒ J = 9 11...1 + 2 n  

=> J chia hết cho 9.

+) Chứng minh  11...1 + 2 n ⋮ 3 .

Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.

Số 11...1 gồm n chữ số 1. Khi đó, 1 + 1 + ... + 1 = n .

Suy ra 11...1 và n có cùng số dư trong phép chia cho 3.

=> 11...1-n chia hết cho 3.

=> (11...1+2n) ⋮ 3

⇒ J ⋮ 27

1 tháng 11 2018

29 tháng 7 2017

cho A = 10n+18n-1 chia hết cho 27

suy ra 10n+18n-1 chia hết cho 27

suy ra n=1

a:Sửa đề: \(10^{n}+18n-1\) chia hết cho 27

Đặt \(A=10^{n}+18n-1\)

\(=\left(10^{n}-1\right)+18n=99\ldots9+18n\) (n chữ số 9)

=9(11...1+2n)⋮9

11..1+2n=n+2n=3n⋮3

=>A⋮9*3

=>A⋮27

b: Sửa đề: \(10^{n}+72n-1\)

Đặt \(B=10^{n}+72n-1\)

\(=\left(10^{n}-1\right)+72n\)

=99...9+72n(n chữ 9)

=9(11...1+8n)

11...1+8n=n+8n=9n⋮9

=>B⋮9*9

=>B⋮81

AH
Akai Haruma
Giáo viên
20 tháng 11 2023

Lời giải:
Nếu $n$ chia hết cho $3$. Đặt $n=3k$ với $k$ tự nhiên.

Khi đó: $A=10^n+18n-1=10^{3k}+18.3k-1=1000^k+54k-1$

Có:
$1000\equiv 1\pmod {27}\Rightarrow 1000^k\equiv 1^k\equiv 1\pmod {27}$

$54k\equiv 0\pmod {27}$

$\Rightarrow 1000^k+54k-1\equiv 1+0-1\equiv 0\pmod {27}$

Hay $A\equiv 0\pmod {27}(1)$

Nếu $n$ chia $3$ dư $1$. Đặt $n=3k+1$ với $k$ tự nhiên.

Khi đó:

$A=10^{3k+1}+18(3k+1)-1=1000^k.10+54k+17$

$\equiv 1^k.10+0+17=27\equiv 0\pmod {27}(2)$

Nếu $n$ chia $3$ dư $2$. Đặt $n=3k+2$ với $k$ tự nhiên.

Khi đó:

$A=10^{3k+2}+18(3k+2)-1=1000^k.100+54k+35$

$\equiv 1^k.100+0+35=135\equiv 0\pmod {27}(3)$
Từ $(1); (2); (3)\Rightarrow A\vdots 27$ với mọi $n$ tự nhiên.

22 tháng 11 2023

Em cảm ơn thầy/cô nhiều ạ .