tính a,b biết \(\frac{2}{a}\)=\(\frac{3}{b}\)va a.b=96
ai nhanh mình tích cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^2+b^2}{a-b}=\frac{\left(a-b\right)^2+2ab}{a-b}=a-b+\frac{2ab}{a-b}=a-b+\frac{12}{a-b}\ge2\sqrt{12}=4\sqrt{3}\left(Cauchy\right)\)
Ta có :
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow Q=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=1\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{c}\\\frac{1}{b}=\frac{1}{a}\end{cases}}\)
\(\Leftrightarrow a=b=c\)
Vậy P =1
a/\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
=\(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}\)
=2.5
=10
Đặt \(\frac{a}{b}=\frac{c}{d}=k\), suy ra \(a=bk;c=dk\)
\(VT=\frac{2b^2k^2-3b^2k+3b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+3\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(1\right)\)
\(VP=\frac{2d^2k^2-3d^2k+3d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+3\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(2\right)\)
Từ (1) và (2) suy ra ĐPcm
đặt 2/a=3/b=k
=> a=2k, b=3k
=> a.b=2k.3k=6.k^2=96
=> k^2=16=> k=4 hoặc k=-4
nếu k=4
=> a=8
=> b=12
nếu k=-4
=> a=-8
=. b=-12
vậy: a=8, b=12 và a=-8, b=-12