So sánh :
64 mũ 8 và 16 mũ 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B =\(32^{17}.8^{19}\)
So sánh :\(A=64^{11}.16^{11}\)và \(B=32^{17}.8^{19}\)
TA có :\(A=64^{11}.16^{11}=\left(64.16\right)^{11}=1024^{11}=\left(2^{10}\right)^{11}\)\(=2^{110}\)
\(B=32^{17}.8^{19}=\left(2^5\right)^{17}.\left(2^3\right)^{19}=2^{85}.2^{57}\)\(=2^{142}\)
VÌ A < B ( 2110< 2142)
Nên A < 3217.819
\(6^8và16^{12}=\left(6.8\right)^0và\left(16.3\right)^9=48< 48^9\)
6⁸ = (6²)⁴ = 36⁴
16¹² = (16³)⁴ = 4096⁴
Do 36 < 4096 nên 36⁴ < 4096⁴
Vậy 6⁸ < 16¹²
a) Vì \(-45< -16\) nên \(\left(-\dfrac{45}{17}\right)^{15}< \left(\dfrac{-16}{17}\right)^{15}\)
b) Vì \(21< 23\) nên \(\left(-\dfrac{8}{9}\right)^{21}< \left(-\dfrac{8}{9}\right)^{23}\)
c) \(27^{40}=3^{3^{40}}=3^{120}\)
\(64^{60}=8^{2^{60}}=8^{120}\)
Vì \(3< 8\) nên \(3^{120}< 8^{120}\) hay \(27^{40}< 64^{60}\)
con ai kooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
\(16^{24}=\left(2^4\right)^{24}=2^{96}\)
\(64^{20}=\left(2^6\right)^{20}=2^{120}\)
=> \(2^{120}>2^{96}\) hay \(16^{24}<64^{20}\)
Ta có:
16^24 = (2^4)^24 = 2^96
64^20 = (2^6)^20 = 2^120
Vì 96 < 120 nên 2^96 < 2^120
Vậy 16^24 < 64^20
Ta có :
648 = (43)8 = 424
1612 = (42)12 = 424
=> 648 = 1612
Ta có : \(64^8=\left(2^6\right)^8=2^{48}\)
\(16^{12}=\left(2^4\right)^{12}=2^{48}\)
Vì 248 = 248 => 648 =1612