Cho a,b,c là 3 chữ số khác 0. CMR: abc + bca + cab là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ai tích mình lên 10 cái mình tích người đó cả tháng
tìm số tự nhiên abc có 3 chữ số khác nhau và khác 0, sao cho abc bằng trung bình cộng của bca và cab

\(\overline{abc}=\dfrac{1}{2}\left(\overline{bca}+\overline{cab}\right)\)
=>\(100a+10b+c=\dfrac{1}{2}\left(100b+10c+a+100c+10a+b\right)\)
=>\(100a+10b+c=\dfrac{1}{2}\left(101b+110c+11a\right)\)
=>\(100a+10b+c=50,5b+55c+5,5a\)
=>\(94,5a-40,5b-54c=0\)
=>\(\left(a;b;c\right)\in\left\{\left(1;1;1\right);\left(2;2;2\right);...;\left(9;9;9\right)\right\}\)
Vậy: Các số cần tìm là \(\left\{111;222;333;444;555;666;777;888;999\right\}\)

1)
A= abc + bca + cab = 111a + 111b + 111c = 3 . 37 . ( a +b + c )
số chính phương phải chứa thừa số nguyên tố với số mũ chẵn, do đó a + b + c phải bằng 37k2 ( k \(\in\)N ) . điều này vô lý vì 3 \(\le\)a + b + c \(\le\)37
Vậy A không là số chính phương

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)

Ta có:
\(\dfrac{\overline{abc}}{\overline{bc}}=\dfrac{\overline{bca}}{\overline{ca}}=\dfrac{\overline{cab}}{\overline{ab}}\)
\(\Rightarrow\dfrac{100a+\overline{bc}}{\overline{bc}}=\dfrac{100b+\overline{ca}}{\overline{ca}}=\dfrac{100c+\overline{ab}}{\overline{ab}}\)
\(\Rightarrow\dfrac{100a}{\overline{bc}}+1=\dfrac{100b}{\overline{ca}}+1=\dfrac{100a}{\overline{ab}}+1\)
\(\Rightarrow\dfrac{100a}{\overline{bc}}=\dfrac{100b}{\overline{ca}}=\dfrac{100c}{\overline{ab}}\)
\(\Rightarrow\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}\)
Đặt: \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}=k\)
\(\Rightarrow a=k\overline{bc};b=k\overline{ca};c=k\overline{ab}\)
Ta có: \(\dfrac{a+b+c}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{k\overline{bc}+k\overline{ca}+k\overline{ab}}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{k\left(\overline{bc}+\overline{ca}+\overline{ab}\right)}{\overline{bc}+\overline{ca}+\overline{ab}}=k\)
Nên: \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}=\dfrac{c}{\overline{ab}}=\dfrac{a+b+c}{\overline{bc}+\overline{ca}+\overline{ab}}=\dfrac{a+b+c}{10b+c+10c+a+10a+b}=\dfrac{a+b+c}{11\left(a+b+c\right)}=\dfrac{1}{11}\)
\(\Rightarrow k=\dfrac{1}{11}\)
Giá trị của biểu thức P là:
\(P=\dfrac{a}{\overline{bc}}+\dfrac{b}{\overline{ca}}+\dfrac{c}{\overline{ab}}=k+k+k=\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}=\dfrac{3}{11}\)

ta có
s = abc + bca + cab
=> s =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>S = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
=> S = 111a + 111b + 111c
=> S = 111( a+b+c )= 37 . 3( a+b + c)
giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
3(a+b+c) chia hết 37
=> a+b+c chia hết cho 37
Điều này không xảy ra vì 1 ≤ a + b + c ≤ 27
vậy S = abc + bca + cab không phải là số chính phương
tk cho mk nha $_$
Ta có: \(\overline{abc}+\overline{bca}+\overline{cab}\)
\(=100a+10b+c+100b+10c+a+100c+10a+b\)
\(=111a+111b+111c\)
\(=111.\left(a+b+c\right)⋮111\)là hợp số
Vậy \(\overline{abc}+\overline{bca}+\overline{cab}\)là hợp số