Tìm x,biết
(x-1)(x+1)-(x+3)(2x+4)=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(4-2\left(x+1\right)=2\)
\(\Leftrightarrow2\left(x+1\right)=2\)
\(\Leftrightarrow x+1=1\)
hay x=0
Bài 2:
Ta có: \(\left|2x-3\right|-1=2\)
\(\Leftrightarrow\left|2x-3\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
a]={23;24;25;26....;35}
b]={4;8;14;...}
c]{4}
Tim x thuoc N=thi ko biet nha!
a, 3.(2\(x\) + 4) + 198 = (-3)2.10
3.(2\(x\) + 4) + 198 = 90
3.(2\(x\) + 4) = 90 - 198
3.(2\(x\) + 4) = - 108
2\(x\) + 4 = -108 : 3
2\(x\) + 4 = -36
2\(x\) = - 36 - 4
2\(x\) = - 40
\(x\) = -40 : 2
\(x\) = - 20
b, 2.(\(x\) + 7) - 6 = 18
2.(\(x\) + 7) = 18 + 6
2.(\(x\) + 7) =24
\(x\) + 7 = 24 : 2
\(x\) + 7 = 12
\(x\) = 12 - 7
\(x\) = 5
Sửa đề : a) Tìm GTNN A
a) \(A=\left|x-5\right|+3\)có : \(\left|x-5\right|\ge0\Rightarrow\left|x-5\right|+3\ge0\)
\(\Leftrightarrow A\ge3\)dấu "=" xảy ra khi : \(\left|x-5\right|=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy GTNN A = 3 khi x = 5.
b) \(C=-\left|x+1\right|+5\)có : \(-\left|x+1\right|\le0\Rightarrow-\left|x+1\right|+5\le5\)
\(\Leftrightarrow C\le5\)dấu "=" xảy ra khi : \(-\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy GTLN C = 5 khi x = -1.
\(D=5-\left|2x+3\right|\)có : \(-\left|2x+3\right|\le0\Rightarrow5-\left|2x+3\right|\le5\)
\(\Leftrightarrow D\le5\)dấu "=" xảy ra khi : \(-\left|2x+3\right|=0\Leftrightarrow2x+3=0\Leftrightarrow x=-\frac{3}{2}\)
Vậy GTLN D = 5 khi x = -3/2.
c) \(\left|x-3\right|+\left|y+1\right|=0\)có \(\left|x-3\right|\ge0;\left|y+1\right|\ge0\Rightarrow\left|x-3\right|+\left|y+1\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}.\)
\(\Leftrightarrow x^2-1-2x^2-10x-12-6=0\)
\(\Leftrightarrow x^2+10x+19=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5+\sqrt{6}\\x=-5-\sqrt{6}\end{matrix}\right.\)