K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

A=x2+2xy+2y2-2x-4y+2

=x2+xy-x+y2+xy-y-x-y+1+y2-2y+1

=(x2+xy-x)+(y2+xy-y)-(x+y-1)+(y2-2y+1)

= x(x+y-1)+y(y+x-1)-(x+y-1)+(y-1)2

=(x+y-1)(x+y-1)+(y-1)2

A=(x+y-1)2+(y-1)2

do (x+y-1)2\(\ge0\forall x;y\)

(y-1)2\(\ge0\forall y\)

=>(x+y-1)2+(y-1)2\(\ge0\)

=>Min A=0 khi

x+y-1=0

=>x+y=1 (*)

y-1=0

=>y=1

thay y=1 vào (*) ta đc

x+1=1

=>x=0

vậy....

11 tháng 11 2017

3) \(B=3x^2+x+7\)

\(\Leftrightarrow B=3x^2+x+\dfrac{1}{12}+\dfrac{83}{12}\)

\(\Leftrightarrow B=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{83}{12}\)

\(\Leftrightarrow B=3\left[x^2+2.x.\dfrac{1}{6}+\left(\dfrac{1}{6}\right)^2\right]+\dfrac{83}{12}\)

\(\Leftrightarrow B=3\left(x+\dfrac{1}{6}\right)^2+\dfrac{83}{12}\)

Vậy GTNN của \(B=\dfrac{83}{12}\) khi \(x+\dfrac{1}{6}=0\Leftrightarrow x=\dfrac{-1}{6}\)

27 tháng 5 2022

dd

26 tháng 11 2023

c: Xét (O) có

ΔMKD nội tiếp

MD là đường kính

Do đó: ΔMKD vuông tại K

=>MK\(\perp\)KD tại K

=>MK\(\perp\)AD tại K

Xét ΔMDA vuông tại M có MK là đường cao

nên \(AK\cdot AD=AM^2\left(1\right)\)

Xét ΔAOM vuông tại M có MH là đường cao

nên \(AH\cdot AO=AM^2\left(2\right)\)

Từ (1) và (2) suy ra \(AK\cdot AD=AH\cdot AO\)

a: ΔOAC cân tại O

mà OM là đường cao

nên OM là phân giác của góc AOC

Xét ΔOAM và ΔOCM có

OA=OC

\(\hat{AOM}=\hat{COM}\)

OM chung

Do đó: ΔOAM=ΔOCM

=>\(\hat{OAM}=\hat{OCM}\)

=>\(\hat{OCM}=90^0\)

=>MC là tiếp tuyến của (O)

b: Gọi K là giao điểm của BC và AM

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC⊥KB tại C

=>ΔACK vuông tại C

Ta có: \(\hat{MAC}+\hat{MKC}=90^0\) (ΔACK vuông tại C)

\(\hat{MCA}+\hat{MCK}=\hat{ACK}=90^0\)

\(\hat{MAC}=\hat{MCA}\)

nên \(\hat{MKC}=\hat{MCK}\)

=>MK=MC

mà MA=MC

nên MA=MK(1)

Ta có: CH⊥AB

KA⊥BA

Do đó: CH//KA

Xét ΔBAM có IH//AM

nên \(\frac{IH}{AM}=\frac{BI}{BM}\left(2\right)\)

Xét ΔBMK có CI//KM

nên \(\frac{CI}{KM}=\frac{BI}{BM}\left(3\right)\)

Từ (1),(2),(3) suy ra IH=IC


19 tháng 8

a) Chứng minh \(M C\) là tiếp tuyến của đường tròn

\(A M\) là tiếp tuyến tại \(A\), nên \(A M \bot A O\).

Ta có:

  • \(O M\) là đường thẳng đi qua \(O\) và vuông góc với \(A C\) (theo giả thiết).
  • Tam giác \(A O C\) vuông tại \(A\) (do \(A B\) là đường kính nên \(\angle A C B = 90^{\circ}\)).

Suy ra:

  • \(A C \bot O C\)
  • \(O M \bot A C\)

\(\Rightarrow O M / / O C\)

Xét tam giác \(A O C\), vì \(A M\) là tiếp tuyến tại \(A\) nên \(\angle M A C = \angle O C A\).

\(\angle M A C = \angle M C A\)
\(\Rightarrow M C\) tạo với bán kính \(O C\) một góc vuông tại \(C\)

\(\Rightarrow M C\) tiếp xúc với đường tròn tại \(C\).
→ MC là tiếp tuyến của đường tròn

b) Gọi \(H\) là hình chiếu của \(C\) trên \(A B\); \(I\) là giao điểm của \(M B\)\(C H\). Chứng minh: \(C I = I H\).

Chứng minh:

  • Tam giác \(A B C\) vuông tại \(A\)\(H\) là chân đường vuông góc từ \(C\) xuống \(A B\)\(H\) là hình chiếu của \(C\) lên đường kính → \(C H\) là đường cao ứng với cạnh huyền trong tam giác vuông \(A C B\).
  • Theo tính chất đường tròn và tiếp tuyến:
    \(M C\) là tiếp tuyến tại \(C\), \(M B\) là cát tuyến.
    Ta có: \(M B^{2} = M C \cdot M A\) (định lý tiếp tuyến – cát tuyến).
  • Xét tam giác \(M C H\), đường thẳng \(M B\) cắt \(C H\) tại \(I\).

Sử dụng hệ thức của tam giác vuông nội tiếp đường tròn:

\(C H^{2} = C I \cdot I H\)

Nhưng vì tam giác \(A B C\) vuông tại \(A\) nên \(C H^{2} = A H \cdot H B\)

Mà theo tính chất đồng dạng của các tam giác \(\Rightarrow C I = I H\).

\(C I = I H\).

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

b: Xét ΔOBA vuông tại B có BH là đường cao

nên OH*OA=OB^2=OA^2-AB^2

20 tháng 9 2021
Tui ko bt lm đâu há há