phân tích đa thức thành nhân tử:
3x3 - 14x2 + 4x +3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x 2 – 4x + 1)( x 2 – 2x + 3). b) (3x – y – 1)(x – 7y – 1).
a: Ta có: \(10x^4-27x^3y-110x^2y^2-27xy^3+10y^4\)
\(=10x^4+20x^2y^2+10y^4-27xy\left(x^2+y^2\right)-130x^2y^2\)
\(=10\left(x^2+y^2\right)^2-27xy\left(x^2+y^2\right)-130x^2y^2\)
\(=10\left(x^2+y^2\right)^2-52xy\left(x^2+y^2\right)+25xy\left(x^2+y^2\right)-130x^2y^2\)
\(=2\left(x^2+y^2\right)\left(5x^2+5y^2-26xy\right)+5xy\left(5x^2+5y^2-26xy\right)\)
\(=\left(5x^2-26xy+5y^2\right)\left(2x^2+5xy+2y^2\right)\)
\(=\left(5x^2-25xy-xy+5y^2\right)\left(2x^2+4xy+xy+2y^2\right)\)
\(=\left\lbrack5x\left(x-5y\right)-y\left(x-5y\right)\right\rbrack\left\lbrack2x\left(x+2y\right)+y\left(x+2y\right)\right\rbrack\)
=(5x-y)(x-5y)(2x+y)(x+2y)
b: \(x^5-4x^4+3x^3+3x^2-4x+1\)
\(=x^5+x^4-5x^4-5x^3+8x^3+8x^2-5x^2-5x+x+1\)
\(=\left(x+1\right)\left(x^4-5x^3+8x^2-5x+1\right)\)
\(=\left(x+1\right)\left(x^4-x^3-4x^3+4x^2+4x^2-4x-x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(x^3-4x^2+4x-1\right)\)
\(=\left(x+1\right)\left(x-1\right)\left\lbrack\left(x^3-x^2\right)-3x^2+3x+x-1\right\rbrack\)
\(=\left(x+1\right)\left(x-1\right)\cdot\left(x-1\right)\left(x^2-3x+1\right)=\left(x+1\right)\left(x-1\right)^2\cdot\left(x^2-3x+1\right)\)
\(3x^3+3x^2-3x-9=3\left(x^3+x^2-x-3\right)\)
Check lại đề hộ mình nhé:vv
a) \(2x^2+5x+2\)
\(=2x^2+4x+x+2\)
\(=2x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+2\right)\left(2x+1\right)\)
b) \(4x^2-4x-9y^2+12y-3\)
\(=\left(4x^2-4x+1\right)-\left(9y^2-12y+4\right)\)
\(=\left(2x-1\right)^2-\left(3y-2\right)^2\)
\(=\left(2x-1+3y-2\right)\left(2x-1-3y+2\right)\)
\(=\left(2x+3y-3\right)\left(2x-3y+1\right)\)
c) \(x^4-2x^3-4x^2+4x-3\)
\(=x^4+x^3-x^2+x-3x^2-3x+3x-3\)
\(=\left(x^4+x^3-x^2+x\right)-\left(3x^2+3x-3x+3\right)\)
\(=x\left(x^3+x^2-x+1\right)-3\left(x^3+x^2-x+1\right)\)
\(=\left(x^3+x^2-x+1\right)\left(x-3\right)\)
d) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a: \(3x^3-75x\)
\(=3x\left(x^2-25\right)\)
\(=3x\left(x-5\right)\left(x+5\right)\)
b: \(x^4y^2-12x^3y^2+48x^2y^2-64xy^2\)
\(=xy^2\left(x^3-12x^2+48x-64\right)\)
\(=xy^2\cdot\left(x-4\right)^3\)
\(4x^2+4x-3\)
\(4x^2+4x+1-4\)
\(\left(2x+1\right)^2-2^2\)
\(\left(2x+1-2\right)\left(2x+1+2\right)\)
\(\left(2x-1\right)\left(2x+3\right)\)