tim x dua vao quan he uoc boi:tim so tu nhien x sao cho x-1 la uoc cua 12tim so tu nhien x sao cho 2x+1 la uoc cua 28tim so tu nhien x sao cho x+15 la boi cua x+3tim cac so nguyen x,y sao cho (x+1)(y-2)=3tim so nguyen x sao cho(x+2).(y-1)=2tim so nguyen to x vua la uoc cua 275 vua la uoc cua 180tim so nguyen to x,y biet x+y=12 va UCLL (x:y)=5tim so tu nhien x,y biet x+y=32 va UCLL (x:y)=8tim so tu nhien x biet x chia het cho10; xchia het cho12; x chia het cho15 va 100<x<150tim so x nho nhat khac 0b...
Đọc tiếp
tim x dua vao quan he uoc boi:
tim so tu nhien x sao cho x-1 la uoc cua 12
tim so tu nhien x sao cho 2x+1 la uoc cua 28
tim so tu nhien x sao cho x+15 la boi cua x+3
tim cac so nguyen x,y sao cho (x+1)(y-2)=3
tim so nguyen x sao cho(x+2).(y-1)=2
tim so nguyen to x vua la uoc cua 275 vua la uoc cua 180
tim so nguyen to x,y biet x+y=12 va UCLL (x:y)=5
tim so tu nhien x,y biet x+y=32 va UCLL (x:y)=8
tim so tu nhien x biet x chia het cho10; xchia het cho12; x chia het cho15 va 100<x<150
tim so x nho nhat khac 0b biet x chia het cho 24 va 30
40 chia het cho x . 56 chia het cho x va x>6
Có: \(25-y^2\le25\)
\(\Rightarrow8\left|x-2009\right|\le25\)
\(\Rightarrow\left|x-2009\right|\le3\)
\(\Rightarrow\left[{}\begin{matrix}\left|x-2009\right|=3\\\left|x-2009\right|=2\\\left|x-2009\right|=1\\\left|x-2009\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-2009=3\\x-2009=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2012\\x=2006\end{matrix}\right.\\\left[{}\begin{matrix}x-2009=2\\x-2009=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2011\\x=2007\end{matrix}\right.\\\left[{}\begin{matrix}x-2009=1\\x-2009=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2010\\x=2008\end{matrix}\right.\\x-2009=0\Rightarrow x=2009\end{matrix}\right.\)
=> Ta có các TH sau:
\(\left[{}\begin{matrix}25-y^2=8\cdot3=24\\25-y^2=8\cdot2=16\\25-y^2=8\cdot1=8\\25-y^2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y^2=1\\y^2=9\\y^2=17\\y^2=25\end{matrix}\right.\)
Vì y thuộc N nên: \(\left[{}\begin{matrix}y=1\\y=3\\y=\sqrt{17}\left(loai\right)\\y=5\end{matrix}\right.\)
=> các gt x;y thỏa mãn đề là:
\(\left[{}\begin{matrix}y=1\\y=3\\y=5\end{matrix}\right.\) lần lượt các gt x tương đương là\(\left[{}\begin{matrix}\left[{}\begin{matrix}x=2012\\x=2006\end{matrix}\right.\\\left[{}\begin{matrix}x=2011\\x=2007\end{matrix}\right.\\x=2009\end{matrix}\right.\)
Mk ko hiểu cách của bạn lắm :)
Theo đề bài: \(25-y^2=8\left|x-2009\right|\)
\(\left\{{}\begin{matrix}8\left|x-2009\right|\ge0\\8\left|x-2009\right|⋮8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}25-y^2\ge0\\25-y^2⋮8\end{matrix}\right.\)
Suy ra:\(y^2\le25\)
Vì \(y\in N\) nên \(y\) có thể là: \(\left\{0;1;2;3;4;5\right\}\)
Xét từng trường hợp ta có:
\(25-0^2=25⋮̸8\)
\(25-1^2=24⋮8\)
\(25-2^2=21⋮̸8\)
\(25-3^2=16⋮8\)
\(25-4^2=9⋮̸8\)
\(25-5^2=0⋮8\)
Vậy ta sẽ xét:
\(y=\left\{1;3;5\right\}\)
Xét lần lượt ta có:
\(\left[{}\begin{matrix}y=1\Rightarrow8\left|x-2009\right|=24\Rightarrow\left|x-2009\right|=3\Rightarrow\left[{}\begin{matrix}x=2012\\x=2006\end{matrix}\right.\\y=3\Rightarrow8\left|x-2009\right|=16\Rightarrow\left|x-2009\right|=2\Rightarrow\left[{}\begin{matrix}x=2011\\x=2007\end{matrix}\right.\\y=5\Rightarrow8\left|x-2009\right|=0\Rightarrow x=2009\end{matrix}\right.\)