Câu 1 ;CMR với mọi x,y : \(x^2+xy+y^2+1>0\)
Câu 2 : Chứng minh \(x^3+y^3-z^3+3xyz⋮x+y-z\) .Tìm thương của phép chia .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ui da . Đau quá !
Bác giúp cháu với ?
Ai làm bn bị chảy máu vậy .
Câu cuối khó quá . Cậu thông cảm . Ti ck mk nýe
Đổi 1 phút 15 giây = 1,25 giờ
Chiều dài cây cầu là:
54x1,25=67,5(km)
Bài 1:
Ta có:\(x^2+xy+y^2+1\)
\(=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)
\(=\left(x^2+\dfrac{1}{2}xy\right)+\left(\dfrac{1}{2}xy+\dfrac{1}{4}y^2\right)+\dfrac{3}{4}y^2+1\)
\(=x.\left(x+\dfrac{1}{2}y\right)+\dfrac{1}{2}y.\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2+1\)
\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+\dfrac{1}{2}y\right)^2\ge0;\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\Rightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1>0\)
Hay \(x^2+xy+y^2+1>0\) (đpcm)
Chúc bạn học tốt!!!
hả ko phải lớp trưởng hay sao mà hcus