Cho a2 >_ 2. Tifm GTNN cua bt:
A= a2+1/a2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{a}+\dfrac{1}{b}-\left(\dfrac{a}{b}+\dfrac{b}{a}-2\right)=\dfrac{1-a+b}{b}+\dfrac{1-b+a}{a}\)
Vì \(a^2+b^2=1\) và \(a,b>0\Leftrightarrow0< a< 1;0< b< 1\Leftrightarrow1+a-b>0;1-b+a>0\)
\(\Leftrightarrow A\ge2\sqrt{\dfrac{\left(1-a+b\right)\left(1-b+a\right)}{ab}}=2\sqrt{\dfrac{1-a^2-b^2+2ab}{ab}}=2\sqrt{2}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=1\\\dfrac{1-a+b}{b}=\dfrac{1-b+a}{a}\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{\sqrt{2}}\)
a) Áp dụng Cauchy Schwars ta có:
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi: x=y=1
\(A=\dfrac{a^2+a-1}{a^2+a+1}\)
\(\Leftrightarrow\left(A-1\right)a^2+\left(A-1\right)a+A+1=0\)
Để PT theo nghiệm a có nghiệm thì
\(\Delta=\left(A-1\right)^2-4\left(A-1\right)\left(A+1\right)\ge0\)
\(\Leftrightarrow-3A^2-2A+5\ge0\)
\(\Leftrightarrow-\dfrac{5}{3}\le A\le1\)
Vậy \(\left\{{}\begin{matrix}max=1\\min=-\dfrac{5}{3}\end{matrix}\right.\)
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
\(A=a^2+\dfrac{1}{a^2}=\dfrac{3a^2}{4}+\left(\dfrac{a^2}{4}+\dfrac{1}{a^2}\right)\ge\dfrac{3.2}{4}+1=\dfrac{5}{2}\)
Vậy GTNN là \(A=\dfrac{5}{2}\) dấu = xảy ra khi \(a^2=2\)
Ta có: \(A=a^2+\dfrac{1}{a^2}=\dfrac{3a^2}{4}+\dfrac{a^2}{4}+\dfrac{1}{a^2}=\dfrac{3a^2}{4}+\left(\dfrac{a^2}{4}+\dfrac{1}{a^2}\right)\)
Do \(a^2\ge2\) => \(\dfrac{3a^2}{4}\ge\dfrac{3}{4}.2=\dfrac{3}{2}\) (*)
Áp dụng BĐT cô-si :
\(\dfrac{a^2}{4}+\dfrac{1}{a^2}\ge2\sqrt{\dfrac{a^2}{4}.\dfrac{1}{a^2}}=2.\dfrac{1}{2}=1\) (**)
Từ (*) và (**) suy ra :
\(\dfrac{3a^2}{4}+\left(\dfrac{a^2}{4}+\dfrac{1}{a^2}\right)\ge\dfrac{3}{2}+1=\dfrac{5}{2}\)
<=> \(A\ge\dfrac{5}{2}\)
Dấu "=" xảy ra khi \(a^2=2\) <=> \(a=\pm\sqrt{2}\)
Vậy GTNN của \(A=a^2+\dfrac{1}{a^2}\) là \(\dfrac{5}{2}\) khi \(a=\pm\sqrt{2}\)