CMR: a^4+b^4+c^4>=abc(a+b+c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Cách khác:
Xét hiệu:\(a^4+b^4+c^4-abc\left(a+b+c\right)\)
\(=\frac{1}{4}\left[\left(a^2+c^2-2b^2\right)^2+\left(ab+bc-2ca\right)^2\right]+\frac{3}{4}\left(a-c\right)^2\left[\left(a+c\right)^2+b^2\right]\ge0\)
Dấu "=" xảy ra khi \(a=b=c\)
P/s: Bài đơn giản, làm 3 dòng:DDD (vắn tắt tuyệt đối)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^4+b^4+c^4)(1+1+1)\geq (a^2+b^2+c^2)^2\)
\((a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2\)
\(\Rightarrow 3(a^4+b^4+c^4)\geq (a^2+b^2+c^2).\frac{(a+b+c)^2}{3}\)
\(\Leftrightarrow a^4+b^4+c^4\geq \frac{(a^2+b^2+c^2)(a+b+c)}{9}.(a+b+c)(1)\)
Áp dụng BĐT AM-GM:
\((a^2+b^2+c^2)(a+b+c)\geq 3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}=9abc(2)\)
Từ $(1);(2)\Rightarrow a^4+b^4+c^4\geq abc(a+b+c)$
hay $\frac{a^4+b^4+c^4}{abc}\geq a+b+c$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$



Lời giải:
Ta có:
\(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Xét \(a^4+b^4-(ab^3+a^3b)=(a-b)(a^3-b^3)\)
\(=(a-b)^2(a^2+ab+b^2)\geq 0\forall a,b> 0\)
\(\Rightarrow a^4+b^4\geq ab^3+a^3b\)
\(\Rightarrow 2(a^4+b^4)\geq (a^3+b^3)(a+b)\)
\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{(a^3+b^3)(a+b)}{2ab(a^3+b^3)}=\frac{a+b}{2ab}=\frac{1}{2a}+\frac{1}{2b}\)
Thực hiện tương tự với các phân thức còn lại:
\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}+\frac{b^4+c^4}{bc(b^3+c^3)}+\frac{c^4+a^4}{ca(c^3+a^3)}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=3\)

a^4 + b^4 >= 2a^2b^2
b^4 + c^4 >= 2b^2c^2
a^4 + c^4 >= 2a^2c^2
--------------------------------------...
Cộng vế theo vế ta có:
=> 2a^4 + 2b^4 + 2c^4 >= 2(a^2b^2 + b^2c^2 + a^2c^2)
<=> a^4 + b^4 + c^4 >= a^2b^2 + b^2c^2 + a^2c^2 (1)
Áp dụng Cauchy lần nữa ta có:
a^2b^2 + b^2c^2 = b^2 (a^2 +c^2) >= b^2(2ac)
b^2c^2 + a^2c^2 = c^2 (b^2 + a^2) >= c^2(2ba)
a^2b^2 + a^2c^2 = a^2 (b^2 + c^2) >= a^2(2bc)
--------------------------------------...
Cộng vế theo vế ta có
=> 2(a^2b^2 + b^2c^2 + a^2c^2) >= 2[b^2(ac) + c^2(ba) + a^2(bc)]
<=> a^2b^2 + b^2c^2 + a^2c^2 >= b^2(ac) + c^2(ba) + a^2(bc)
<=> ......................................>= abc ( b + c + a) (2)
từ (1) và (2) ta có điều fài chứng minh.
Ta có : a^2b^2+b^2c^2+a^2c^2>=abc(a+b+c)
<=> 2a^2b^2+2b^2c^2+2a^2c^2>=2abc(a+b+c)
<=> 2a^2b^2+2b^2c^2+2a^2c^ -2abc(a+b+c)>=0
<=>(a^2b^2-2ab^2c+b^2c^2)+(b^2c^2-2abc^2+a^2c^2)+(a^2c^2-2a^bc+a^2b^2)>=0
<=>(ab-bc)^2+(bc-ac)^2+(ac-ab)^2>=0 là đúng
Ta có a^4+b^4+c^4>=a^2b^2+b^2c^2+a^2c^2
Theo t/c bắc cầu
=>a^4+b^4+c^4>=abc(a+b+c)