K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

a^4 + b^4 >= 2a^2b^2
b^4 + c^4 >= 2b^2c^2
a^4 + c^4 >= 2a^2c^2
--------------------------------------...
Cộng vế theo vế ta có:
=> 2a^4 + 2b^4 + 2c^4 >= 2(a^2b^2 + b^2c^2 + a^2c^2)
<=> a^4 + b^4 + c^4 >= a^2b^2 + b^2c^2 + a^2c^2 (1)
Áp dụng Cauchy lần nữa ta có:
a^2b^2 + b^2c^2 = b^2 (a^2 +c^2) >= b^2(2ac)
b^2c^2 + a^2c^2 = c^2 (b^2 + a^2) >= c^2(2ba)
a^2b^2 + a^2c^2 = a^2 (b^2 + c^2) >= a^2(2bc)
--------------------------------------...
Cộng vế theo vế ta có
=> 2(a^2b^2 + b^2c^2 + a^2c^2) >= 2[b^2(ac) + c^2(ba) + a^2(bc)]
<=> a^2b^2 + b^2c^2 + a^2c^2 >= b^2(ac) + c^2(ba) + a^2(bc)
<=> ......................................>= abc ( b + c + a) (2)
từ (1) và (2) ta có điều fài chứng minh.

13 tháng 3 2022

Ta có : a^2b^2+b^2c^2+a^2c^2>=abc(a+b+c)

<=> 2a^2b^2+2b^2c^2+2a^2c^2>=2abc(a+b+c)

<=> 2a^2b^2+2b^2c^2+2a^2c^ -2abc(a+b+c)>=0

<=>(a^2b^2-2ab^2c+b^2c^2)+(b^2c^2-2abc^2+a^2c^2)+(a^2c^2-2a^bc+a^2b^2)>=0

<=>(ab-bc)^2+(bc-ac)^2+(ac-ab)^2>=0 là đúng

Ta có a^4+b^4+c^4>=a^2b^2+b^2c^2+a^2c^2

Theo t/c bắc cầu

=>a^4+b^4+c^4>=abc(a+b+c)

22 tháng 4 2018

> hay ≥

22 tháng 4 2018

hattori heiji cứ lm đi chắc \(\ge\)

29 tháng 12 2019

Cách khác:

Xét hiệu:\(a^4+b^4+c^4-abc\left(a+b+c\right)\)

\(=\frac{1}{4}\left[\left(a^2+c^2-2b^2\right)^2+\left(ab+bc-2ca\right)^2\right]+\frac{3}{4}\left(a-c\right)^2\left[\left(a+c\right)^2+b^2\right]\ge0\)

Dấu "=" xảy ra khi \(a=b=c\)

P/s: Bài đơn giản, làm 3 dòng:DDD (vắn tắt tuyệt đối)

AH
Akai Haruma
Giáo viên
27 tháng 12 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^4+b^4+c^4)(1+1+1)\geq (a^2+b^2+c^2)^2\)

\((a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2\)

\(\Rightarrow 3(a^4+b^4+c^4)\geq (a^2+b^2+c^2).\frac{(a+b+c)^2}{3}\)

\(\Leftrightarrow a^4+b^4+c^4\geq \frac{(a^2+b^2+c^2)(a+b+c)}{9}.(a+b+c)(1)\)

Áp dụng BĐT AM-GM:

\((a^2+b^2+c^2)(a+b+c)\geq 3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}=9abc(2)\)

Từ $(1);(2)\Rightarrow a^4+b^4+c^4\geq abc(a+b+c)$

hay $\frac{a^4+b^4+c^4}{abc}\geq a+b+c$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
20 tháng 12 2017

Lời giải:

Ta có:

\(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Xét \(a^4+b^4-(ab^3+a^3b)=(a-b)(a^3-b^3)\)

\(=(a-b)^2(a^2+ab+b^2)\geq 0\forall a,b> 0\)

\(\Rightarrow a^4+b^4\geq ab^3+a^3b\)

\(\Rightarrow 2(a^4+b^4)\geq (a^3+b^3)(a+b)\)

\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{(a^3+b^3)(a+b)}{2ab(a^3+b^3)}=\frac{a+b}{2ab}=\frac{1}{2a}+\frac{1}{2b}\)

Thực hiện tương tự với các phân thức còn lại:

\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}+\frac{b^4+c^4}{bc(b^3+c^3)}+\frac{c^4+a^4}{ca(c^3+a^3)}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=3\)