ΔABC có góc A = \(100^o\).Phân giác BD . Chứng minh BC = AD + BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BHA và BHE có:
BD chung
\(\widehat{ABD}\)=\(\widehat{EBD}\)(vì BD là phân giác \(\widehat{B}\))
\(\widehat{BHA}\)=\(\widehat{BHE}\)(vì AH vuông góc với Bd tại H)
\(\Rightarrow\)Tam giác BHA=tam giac BHE(c.g.v-g.n.k)
b) Xét Tam giác BDA và tam giác BDE có
BD chung
BA=BE( vì tam giac BHA = tam giac BHE( chứng minh phần a))
ABD=EBD( vì BD là phân giác của\(\widehat{B}\))
\(\Rightarrow\)Tam giác BDA = Tam giác BDE(c.g.c)
\(\Rightarrow\)\(\widehat{BEA}\)=\(\widehat{A}\)= 90o(2 canh tương ứng và \(\widehat{A}\)= 90o)
ED vuông góc với B tại E
A B C D K E H
d, DA= DE do tam giác ABD = tam giác EBD (Câu b)
=> tam giác DAE cân tại D (đn)
=> ^DAE = ^DEA (tc) (1)
có : AK _|_ BC (gt) ; DE _|_ BC (câu b)
=> DE // AK
=> ^DEA = ^EAK (slt) và (1)
=> ^DAE = ^EAK mà AE nằm giữa AD và AK
=> AE là phân giác của ^CAK (đn)
c, AD = DE
DE < CD do tam giác CDE vuông tại E
=> AD < DC
b) Xét ΔABC vuông tại A và ΔDBE vuông tại D có
AB=BD(gt)
\(\widehat{ABC}\) chung
Do đó: ΔABC=ΔDBE(cạnh góc vuông-góc nhọn kề)
c) Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
BA=BD(gt)
Do đó: ΔBAH=ΔBDH(Cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)
hay BH là tia phân giác của \(\widehat{ABC}\)
d) Ta có: BH là tia phân giác của \(\widehat{ABC}\)(cmt)
nên \(\widehat{ABH}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)
Ta có: \(\widehat{ABH}+\widehat{HBK}=90^0\)
\(\Leftrightarrow\widehat{HBK}+30^0=90^0\)
hay \(\widehat{HBK}=60^0\)
Xét ΔCHD vuông tại D và ΔCBA vuông tại A có
\(\widehat{ACB}\) chung
Do đó: ΔCHD\(\sim\)ΔCBA(g-g)
Suy ra: \(\widehat{CHD}=\widehat{CBA}\)(hai góc tương ứng)
\(\Leftrightarrow\widehat{CHD}=60^0\)
mà \(\widehat{CHD}=\widehat{HKB}\)(hai góc so le trong, BK//AC)
nên \(\widehat{HKB}=60^0\)
Xét ΔHBK có
\(\widehat{HKB}=60^0\)(cmt)
\(\widehat{HBK}=60^0\)(cmt)
Do đó: ΔHBK đều(Dấu hiệu nhận biết tam giác đều)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>DA=DE và BA=BE
=>ΔADE cân tại D và BD là trung trực của AE
c: AD=DE
DE<DC
=>AD<DC
d: AH vuông góc BC
DE vuông góc BC
=>AH//DE
góc AFD=góc BFH=90 độ-góc DBC
góc ADF=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AFD=góc ADF
=>ΔADF cân tại A
a: Ta có: \(\hat{ABD}=\hat{DBC}=\frac12\cdot\hat{ABC}\) (BD là phân giác của góc ABC)
\(\hat{ACE}=\hat{BCE}=\frac12\cdot\hat{ACB}\) (CE là phân giác của góc ACB)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{ABD}=\hat{DBC}=\hat{ACE}=\hat{ECB}\)
Xét ΔADB và ΔAEC có
\(\hat{ABD}=\hat{ACE}\)
AB=AC
\(\hat{DAB}\) chung
DO đó: ΔADB=ΔAEC
=>DB=EC
b: Sửa đề: Chứng minh ED//BC
ΔADB=ΔAEC
=>AD=AE
Xét ΔABC có \(\frac{AE}{AB}=\frac{AD}{AC}\)
nên ED//BC
c: Xét ΔBAC có BD là phân giác
nên \(\frac{AD}{DC}=\frac{BA}{BC}\)
=>\(\frac{AD}{DC}=\frac64=\frac32\)
=>\(\frac{AD}{3}=\frac{DC}{2}\)
mà AD+DC=AC=6cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{AD}{3}=\frac{DC}{2}=\frac{AD+DC}{3+2}=\frac65=1,2\)
=>\(\begin{cases}AD=3\cdot1,2=3,6\left(\operatorname{cm}\right)\\ CD=2\cdot1,2=2,4\left(\operatorname{cm}\right)\end{cases}\)
A B C D H
a) Xét △ABD và △HBD có:
Góc BAD= Góc BHD (=90 độ)
BD chung
Góc ABD= Góc HBD (BD là phân giác góc ABC)
=>△ABD=△HBD (ch.gn) (đpcm)
b)=>AD=HD (2 cạnh tương ứng) (1)
Xét △HDC: Góc DHC=90 độ
=>DH<DC (2)
Từ (1),(2) =>AD<DC
Chúc bạn hok tốt!!!