Chỉ còn 1 ngày nhận ưu đãi gói SVIP cho nhà trường! Đăng ký ngay
Đấu trường tri thức năm 2025 - 2026 chính thức quay trở lại! Xem ngay
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1; Chứng minh:
a) (x-1)(x^2+x+1)=x^3-1
b)(x^3+x^2y+xy+y^3)(x-y)=x^4-y^4
a) Biến đổi vế trái ta có:
\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1=VP\)
=>đpcm
b)Sai đề phải là \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)
Biến đổi vế trái ta có:
\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4\\ =x^4-y^4=VP\)
a) Biến đổi vế trái ta có:
\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1=VP\)
=>đpcm
b)Sai đề phải là \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)
Biến đổi vế trái ta có:
\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4\\ =x^4-y^4=VP\)
=>đpcm