giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu 11:
a. $2x^3(x^2-3x+4)=2x^5-6x^4+8x^3$
b. $(x+3)(x-5)=x^2-5x+3x-15=x^2-2x-15$
c. $(x+5)^2-(x+4)(x-4)=x^2+10x+25-(x^2-16)$
$=10x+41$
Câu 12:
a.
$x^2-3xy=x(x-3y)$
b.
$x^2+6x+9-y^2=(x^2+2.x.3+3^2)-y^2=(x+3)^2-y^2$
$=(x+3-y)(x+3+y)$

Bài 6:
Phương trình hoành độ giao điểm là:
\(ax^2+4x+4=0\)
\(\text{Δ}=16-16a\)
Để (P) tiếp xúc với (d) thì 16-16a=0
hay a=1





Bài 1:
a) Ta có: \(B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

\(m\left(2m-3\right)-2m\left(m+1\right)\)
\(=2m^2-3m-2m^2-2m=-5m⋮5\Rightarrow dpcm\)
\(m\left(2m-3\right)-2m\left(m+1\right)\)
\(=2m^2-3m-2m^2-2m\)
\(=-5m⋮5\) \(\forall m\in Z\)
Vậy \(m\left(2m-3\right)-2m\left(m+1\right)⋮m\left(\forall m\in Z\right)\)
Ta có : \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\)(ĐKXĐ : \(x\ge0;y\ge1;z\ge2\))
\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\) (1)
Mà \(\left(\sqrt{x}-1\right)^2\ge0\); \(\left(\sqrt{y-1}-1\right)^2\ge0\) ; \(\left(\sqrt{z-2}-1\right)^2\ge0\)
Suy ra : (1) \(\Leftrightarrow\begin{cases}\left(\sqrt{x}-1\right)^2=0\\\left(\sqrt{y-1}-1\right)^2=0\\\left(\sqrt{z-2}-1\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=2\\z=3\end{cases}\) (TMĐK)
Vậy \(\left(x_0;y_0;z_0\right)=\left(1;2;3\right)\)
\(S=x_0^2+y_0^2+z_0^2=1^2+2^2+3^2=14\)