Giải phương trình :
\(2.2^{4x}-15.2^{2x}-8=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
a: =>(x-3)(x+1)=0
=>x=3 hoặc x=-1
b: =>x(x-3)=0
=>x=0 hoặc x=3
c: =>(x-5)(x+1)=0
=>x=5 hoặc x=-1
d: =>5x^2+7x-5x-7=0
=>(5x+7)(x-1)=0
=>x=1 hoặc x=-7/5
e: =>x^2-4=0
=>x=2 hoặc x=-4
h: =>x^2-4x+4-3=0
=>(x-2)^2=3
=>\(x=2\pm\sqrt{3}\)
a: \(\Leftrightarrow\left(-x+3\right)\left(x+6\right)=18\)
\(\Leftrightarrow-x^2-6x+3x+18-18=0\)
\(\Leftrightarrow-x\left(x+3\right)=0\)
=>x=0 hoặc x=-3
b: \(\Leftrightarrow x\left(3x^2+6x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2x-\dfrac{4}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow x\in\left\{0;\dfrac{\sqrt{21}}{3}-1;\dfrac{-\sqrt{21}}{3}-1\right\}\)
c: =>x(3x-5)=0
=>x=0 hoặc x=5/3
d: =>(x-2)(x+2)=0
=>x=2 hoặc x=-2
a,Thay m=2 vào pt :
\(\left(1\right)\Leftrightarrow x^2-4x+3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)
\(\Leftrightarrow\left(-2\right)^2-1\left(m+1\right)\ge0\\ \Leftrightarrow4-m-1\ge0\\ \Leftrightarrow3-m\ge0\\ \Leftrightarrow m\le3\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+1\end{matrix}\right.\)
\(x^2_1+x^2_2=5\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5.4\\ \Leftrightarrow4^2-2\left(m+1\right)=20\\ \Leftrightarrow16-2m-2-20=0\\ \Leftrightarrow m=-3\left(tm\right)\)
a)Thay \(m=2\) vào (1) ta đc:
\(x^2-4x+2+1=0\Rightarrow x^2-4x+3=0\)
\(\Rightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b)Áp dụng hệ thức Viet:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{4}{1}=4\\x_1\cdot x_2=\dfrac{c}{a}=m+1\end{matrix}\right.\) (*)
Theo bài: \(x_1^2+x^2_2=5\left(x_1+x_2\right)\)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1\cdot x_2=5\left(x_1+x_2\right)\)
\(\Rightarrow4^2-2\cdot\left(m+1\right)=5\cdot4\)
\(\Rightarrow m=-1\)
Có |x-1| + |2x-3| + |3x+5|+|4x-7|+11x-8 = 0 (1)
<=> |x-1|+|2x-3|+|3x-5|+|4x-7| = 8-11x
Có \(\left|x-1\right|\ge0;\left|2x-3\right|\ge0;\left|3x-5\right|\ge0;\left|4x-7\right|\ge0\)
\(\Rightarrow\left|x-1\right|+\left|2x-3\right|+\left|3x-5\right|+\left|4x-7\right|\ge0\)
\(\Rightarrow8-11x\ge0\Leftrightarrow x\le\frac{8}{11}\)
\(\Rightarrow x-1< 0;2x-3< 0;3x-5< 0;4x-7< 0\)
=>\(\Rightarrow\hept{\begin{cases}\left|x-1\right|=1-x;\left|2x-3\right|=3-2x\\\left|3x-5\right|=5-3x;\left|4x-7\right|=7-4x\end{cases}}\)
Thay vào (1) có :
\(1-x+3-2x+5-3x+7-4x+11x-8=0\)
\(\Leftrightarrow x+8=0\Leftrightarrow x=-8\)( thỏa mãn điều kiện \(x\le\frac{8}{11}\))
Vậy x = - 8
Tích cho mk nhoa !!!! ~~
\(\frac{4x-8}{2x^2+1}=0\)
\(\Leftrightarrow\frac{4\left(x-2\right)}{2x^2+1}=0\)
\(\Leftrightarrow4\left(x-2\right)=0\)
\(\Leftrightarrow x=2\)
Vậy ...
\(\hept{\begin{cases}8\left(2x+y\right)^2-10\left(2x+y\right)\left(2x-y\right)-3\left(2x-y\right)^2=0\\2x+y-\frac{2}{2x-y}=2\end{cases}}\)
\(\hept{\begin{cases}8\left(2x+y\right)^2-10\left(2x+y\right)\left(2x-y\right)-3\left(2x-y\right)^2=0\\\left(2x+y\right)\left(2x-y\right)-2=2\left(2x-y\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8\left(2x+y\right)^2-10\left(2x+y\right)\left(2x-y\right)-3\left(2x-y\right)^2=0\\\left(2x+y\right)\left(2x-y\right)=2\left(2x-y\right)+2\end{cases}}\)
\(\Rightarrow8\left(2+\frac{2}{2x-y}\right)^2-20\left(2x-y\right)-20-3\left(2x-y\right)^2=0\)
Giải pt này vs ẩn là (2x-y) được nghiệm là 2
Rồi bạn lm nốt nhá
Phương trình tương đương với \(2.\left(4^x\right)^2-15.4^x-8=0\)
Đặt \(t=4^x,t>0\), phương trình trở thành :
\(2t^2-15t-8=0\Leftrightarrow\left[\begin{array}{nghiempt}t=8\\t=-\frac{1}{2}\left(1\right)\end{array}\right.\)
Với \(t=8\) ta có \(4^x=8\Leftrightarrow2^{2x}=2^3\Leftrightarrow x=\frac{3}{2}\)
Vậy nghiệm của phương trình là \(x=\frac{3}{2}\)